AEPH
Home > Conferences > Vol. 9. SSFT2025 >
Review of Thermal Runaway Protection for Lithium-Ion Batteries
DOI: https://doi.org/10.62381/ACS.SSFS2025.17
Author(s)
Xingyu Qi
Affiliation(s)
Central South University, Changsha, Hunan, China
Abstract
Lithium-ion batteries are now widely used in various fields of social production and life. However, the safety hazards of Li-ion batteries are still the main problem limiting their development and application. Among them, the thermal runaway of Li-ion batteries is one of the most common safety hazards. This review summarizes the current research status of thermal runaway protection of Li-ion batteries at home and abroad, compares different protection technologies for thermal runaway of Li-ion batteries in different directions, and systematically describes the research progress, key issues, and future development trends in this field.
Keywords
Lithium-ion Batteries, Thermal Runaway, Thermal Runaway Protection.
References
[1] Wakihara, M. (2001). Recent developments in lithium ion batteries. Materials Science and Engineering: R: Reports, 33(4), 109-134. [2] Yao X, Pecht MG. Tab design and failures in cylindrical Li-ion batteries. IEEE Access 2019;7:24082–95. https://doi.org/10.1109/ACCESS.2019.2899793. [3] Saxena S, Kong L, Pecht MG. Exploding e-cigarettes: a battery safety issue. IEEE Access 2018;6:21442–66. https://doi.org/10.1109/ACCESS.2018.2821142. [4] Wu Y, Saxena S, Xing Y, Wang Y, Li C, Yung WKC, Pecht MG. Analysis of manufacturing-induced defects and structural deformations in lithium-ion batteries. Energies 2018;11:1–22. https://doi.org/10.3390/en11040925. [5] Gold, S. A PSPICE Macromodel for Lithium-Ion Batteries. In Proceedings of IEEE the Twelfth Annual Battery Conference on Applications and Advances, Long Beach, CA, USA, 14–17 January 1997; pp. 215–222. [6] Lu, L., Han, X., Li, J., Hua, J., & Ouyang, M. (2013). A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 226, 272–288. https://doi.org/10.1016/j.jpowsour.2012.10.060 [7] Hu, D., Huang, S., Wen, Z., Gu, X., & Lu, J. (2024). A review on thermal runaway warning technology for lithium-ion batteries. Renewable and Sustainable Energy Reviews, 206, 114882. https://doi.org/10.1016/j.rser.2024.114882 [8] Hu, X., Zhang, K., Liu, K., Lin, X., Dey, S., & Onori, S. (2020). Advanced fault diagnosis for Lithium-Ion battery systems: A review of fault mechanisms, fault features, and diagnosis procedures. IEEE Industrial Electronics Magazine, 14 (3), 65–91. https://doi.org/10.1109/mie.2020.2964814. [9] Xiong, R., Sun, W., Yu, Q., & Sun, F. (2020). Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles. Applied Energy, 279, 115855. https://doi.org/10.1016/j.apenergy.2020.115855 [10] Ghazali, A. K., Aziz, N. A. A., & Hassan, M. K. (2025). Advanced Algorithms in Battery Management Systems for Electric Vehicles: A Comprehensive Review. Symmetry, 17(3), 321. https://doi.org/10.3390/sym17030321 [11] Xiong, R., Cao, J., Yu, Q., He, H., & Sun, F. (2018). Critical Review on the Battery State of Charge Estimation Methods for Electric Vehicles. IEEE Access, 6, 1832–1843. https://doi.org/10.1109/ACCESS.2017.2780258 [12] Manas, M.; Yadav, R.; Dubey, R.K. Designing a battery Management system for electric vehicles: A congregated approach. J. Energy Storage 2023, 74, 109439. [13] Badran, M. A., & Toha, S. F. (2024). Employment of artificial intelligence (AI) techniques in battery management system (BMS) for electric vehicles (EV): Issues and challenges. Pertanika Journal of Science & Technology, 32(2), 859–881. https://doi.org/10.47836/pjst.32.2.20 [14] Wilke, S., Schweitzer, B., Khateeb, S., & Al-Hallaj, S. (2017). Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study. Journal of Power Sources, 340, 51-59. [15] Shen, J., Su, Y., Xu, X., Chen, X., Wang, X., Wang, J., & Zhou, F. (2025). Performance of sandwich-type fire-resistant flexible composite phase change material PEE@ EBF for battery thermal management and runaway protection. Applied Thermal Engineering, 258, 124813. [16] Tian, X., Yi, Y., Fang, B., Pu, Y., Wang, T., Liu, P., Qin, L., Li, M., & Zhang, S. (2020). Design Strategies of Safe Electrolytes for Preventing Thermal Runaway in Lithium Ion Batteries. Chemistry of Materials, 32(23), 9821–9848. https://doi.org/10.1021/acs.chemmater.0c02428 [17] Wang, W., Liao, C., Liu, L., Cai, W., Yuan, Y., Hou, Y., Guo, W., Zhou, X., Qiu, S., Song, L., Kan, Y., & Hu, Y. (2019). Comparable investigation of tervalent and pentavalent phosphorus based flame retardants on improving the safety and capacity of lithium-ion batteries. Journal of Power Sources, 420, 143–151. https://doi.org/10.1016/j.jpowsour.2019.02.037 [18] Cho, Y., Kim, K., Ahn, S., & Liu, H. K. (2010). Allyl-substituted triazines as additives for enhancing the thermal stability of Li-ion batteries. Journal of Power Sources, 196(3), 1483–1487. https://doi.org/10.1016/j.jpowsour.2010.08.085 [19] Weng, W., Zhang, Z., Redfern, P. C., Curtiss, L. A., & Amine, K. (2011). Fused ring and linking groups effect on overcharge protection for lithium-ion batteries. Journal of Power Sources, 196(3), 1530–1536. https://doi.org/10.1016/j.jpowsour.2010.08.049 [20] L.M. Moshurchak, Buhrmester, C., Wang, R. L., & Dahn, J. R. (2006). Comparative studies of three redox shuttle molecule classes for overcharge protection of LiFePO4-based Li-ion cells. Electrochimica Acta, 52(11), 3779–3784. https://doi.org/10.1016/j.electacta.2006.10.068 [21] Zhang, H., Qin, B., Han, J., & Passerini, S. (2018). Aqueous/nonaqueous hybrid electrolytes for sodium-ion batteries. ACS Energy Letters, 3(7),1769-1770. [22] Weng, J., Ouyang, D., Yang, X.-Q., Chen, M., Zhang, G., & Wang, J. (2019). Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material. 200, 112071–112071. https://doi.org/10.1016/j.enconman.2019.112071 [23] Verma, A., Shashidhara, S., & Rakshit, D. (2019). A comparative study on battery thermal management using phase change material (PCM). Thermal Science and Engineering Progress, 11, 74–83. https://doi.org/10.1016/j.tsep.2019.03.003 [24] Kshetrimayum, K. S., Yoon, Y. G., Gye, H. R., & Lee, C. J. (2019). Preventing heat propagation and thermal runaway in electric vehicle battery modules using integrated PCM and micro-channel plate cooling system. Applied Thermal Engineering, 159, 113797. [25] Zhang, W., Liang, Z., Yin, X., & Ling, G. (2021). Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling. Applied Thermal Engineering, 184, 116380. [26] Ni, R., Zhang, D., Wang, R., Xie, Z., & Wang, Y. (2023). Prevention and suppression effects of phase change material on thermal runaway in batteries. Case Studies in Thermal Engineering, 48, 103160–103160. https://doi.org/10.1016/j.csite.2023.103160 [27] Patil, M. S., Seo, J. H., & Lee, M. Y. (2021). A novel dielectric fluid immersion cooling technology for Li-ion battery thermal management. Energy Conversion and Management, 229, 113715. [28] Wang, S., Lu, L., Ren, D., Feng, X., Gao, S., & Ouyang, M. (2019). Experimental investigation on the feasibility of heat pipe-based thermal management system to prevent thermal runaway propagation. Journal of Electrochemical Energy Conversion and Storage, 16(3), 031006.‌ [29] Choudhari, V. G., Dhoble, A. S., Panchal, S., Fowler, M., & Fraser, R. (2021). Numerical investigation on thermal behaviour of 5× 5 cell configured battery pack using phase change material and fin structure layout. Journal of Energy Storage, 43, 103234. [30] Zhang, Y., Wu, J., Zheng, L., & Ye, T. (2022). Design and analysis of lithium-ion battery management system based on digital twin. Journal of Electrical Engineering, 17(4), 103-112. https://doi.org/10.11985/2022.04.011.
Copyright @ 2020-2035 Academic Education Publishing House All Rights Reserved