A Review of Attitude Stability Optimisation Research for Quadrotor UAV Based on Fuzzy PID and Adaptive Control
DOI: https://doi.org/10.62381/ACS.FSSD2025.05
Author(s)
Hongyu Shi
Affiliation(s)
Central South University, Changsha, Hunan, China
*Corresponding Author
Abstract
This thesis reviews the research on applying fuzzy PID and adaptive control in attitude optimisation of quadrotor UAV, focusing on the fusion mechanism of these two control methods to enhance the control performance. The improvement methods of fuzzy PID controllers and adaptive control strategies are analysed, highlighting their complementary benefits. Fuzzy PID control has advantages in dynamically adjusting PID parameters, while adaptive control excels in responding to environmental changes. Integrating these two solutions can significantly improve the attitude control performance and stability of a quadrotor UAV in complex environments.
Keywords
Component; Quadcopter UAV; Adaptive Control; Fuzzy Algorithms; Attitude Optimisation
References
[1] Hengzhou Chengsi Research. (2024). 2024 Global and Chinese FPV Quadcopter Drone Industry Leading Enterprises Market Share and Ranking Research Report.
[2] Lopez-Sanchez, I., & Moreno-Valenzuela, J. (2023). PID control of quadrotor UAV: a survey. Annual Reviews in Control, 56, 100900. https://doi.org/10.1016/j.arcontrol.2023.100900
[3] Jiang W.T., Li H.Y., Liu S.Q, et al. (2023). Flight attitude control of quadrotor UAV based on fuzzy PID. Energy Conservation, 42(4), 22-25. https://doi.org/10.3969/j.issn.1004-7948.2023.04.006
[4] Boubakir, A., Souanef, T., Labiod, S., & Whidborne, J. F. (2024). A Robust Adaptive PID-like Controller for Quadrotor Unmanned Aerial Vehicle Systems. Aerospace, 11(12), 980. https://doi.org/10.3390/aerospace11120980
[5] Zhu, S. B., & Chen, H. (2018). Research on Optimal Control of Flight Attitude Stability of Quadrotor UAV. Computer Simulation, 35(6), 225-230.
[6] Li, Z. H. (2023). Research on adaptive PID control of quadrotor UAV under state constraints and drive saturation [D]. Chongqing: Chongqing University.
[7] Bouabdallah, S., Noth, A., & Siegwart, R. (2004). PID vs LQ control techniques applied to an indoor micro quadrotor. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Vol. 3, pp. 2451-2456). Sendai, Japan. https://doi.org/10.1109/IROS.2004.1389776
[8] Mian, A., & Wang, D. (2008). Modeling and backstepping-based nonlinear control strategy for a 6 DoF quadrotor helicopter. Chinese Journal of Aeronautics, 21(3), 261–268.
[9] González-Vázquez, S., & Moreno-Valenzuela, J. (2010). A new nonlinear PI/PID controller for quadrotor posture regulation. In Proc. IEEE Electronics, Robotics and Automotive Mechanics Conf. (pp. 642–647).
[10] Hoffmann, F., Goddemeier, N., & Bertram, T. (2010). Attitude estimation and control of a quadrocopter. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1072-1077).https://doi.org/10.1109/IROS.2010.5649111
[11] Lee, K. U., Kim, H. S., Park, J. B., & Choi, Y. H. (2012). Hovering control of a quadrotor. In 2012, 12th International Conference on Control, Automation and Systems (pp. 162-167). Jeju, Korea (South).
[12] Luong Tuan, L., & Won, S. (2013). PID based sliding mode controller design for the micro quadrotor. In 2013, 13th International Conference on Control, Automation and Systems (ICCAS 2013) (pp. 1860-1865). Gwangju, Korea (South). https://doi.org/10.1109/ICCAS.2013.6704244
[13] Penghong, L., Songlin, C., & Xiaochen, W. (2015). An improved backstepping based controller with integrators for the quadrotor. In 2015, the 34th Chinese Control Conference (CCC) (pp. 545-550). Hangzhou, China. https://doi.org/10.1109/ChiCC.2015.7259693
[14] Modirrousta, A., & Khodabandeh, M. (2015). A novel nonlinear hybrid controller design for an uncertain quadrotor with disturbances. Aerospace Science and Technology, 45, 294–308.
[15] Gao, Q., Yue, F., & Hu, D. (2014). Research of stability augmentation hybrid controller for quadrotor UAV. In The 26th Chinese Control and Decision Conference (2014 CCDC) (pp. 5224-5229). Changsha, China. https://doi.org/10.1109/CCDC.2014.6853113
[16] Ríos, H., Falcón, R., González, O. A., & Dzul, A. (2019). Continuous Sliding-Mode Control Strategies for Quadrotor Robust Tracking: Real-Time Application. IEEE Transactions on Industrial Electronics, 66(2), 1264-1272. https://doi.org/10.1109/TIE.2018.2831191
[17] Shi, J., Pei, Z. C., Tang, Z. Y., et al. (2021). Design and implementation of improved self-active disturbance rejection quadrotor UAV control system. Journal of Beijing University of Aeronautics and Astronautics, 47(9), 1823-1831. https://doi.org/10.13700/j.bh.1001-5965.2020.0333
[18] Kang, C., Park, B., & Choi, J. (2022). Scheduling PID attitude and position control frequencies for time-optimal quadrotor waypoint tracking under unknown external disturbances. Sensors, 22(1), 1.
[19] Ghasemi, & Azimi, M. M. (2022). Adaptive fuzzy PID control based on nonlinear disturbance observer for quadrotor. Journal of Vibration Control, 29(13-14), 2670–2683. https://doi.org/10.1177/10775463221089734
[20] Salzmann, T., Kaufmann, J., Arrizabalaga, M., Pavone, D., Scaramuzza, D., & Ryll, M. (2023). Real-Time Neural MPC: Deep Learning Model Predictive Control for Quadrotors and Agile Robotic Platforms. IEEE Robotics and Automation Letters, 8(4), 2397-2404. https://doi.org/10.1109/LRA.2023.3246839.
[21] Tan, L., Jin, G., Zhou, S., & Wang, L. (2024). A Model-Free Online Learning Control for Attitude Tracking of Quadrotors. Applied Sciences, 14(3), 980. https://doi.org/10.3390/app14030980
[22] He, Y., Xiao, L., Zuo, Q., Cai, H., & Wang, Y. (2025). A Predefined-Time Robust Sliding Mode Control Based on Zeroing Neural Dynamics for Position and Attitude Tracking of Quadrotor. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 55(4), 2438-2450. https://doi.org/10.1109/TSMC.2024.3523402
[23] Zhang, D. H., & Zhang, T. L. (2021). Adaptive PID control of UAV based on fuzzy inference parameter optimization. journal of henan university (natural science edition), 2021, 51(5): 554-562.
[24] Feng, L. J., Deng, K. P., & Zhang, H. Y. (2024). Attitude control of quadrotor UAV based on double closed-loop fuzzy PID. Computer Simulation, 2024, 41(8): 19-24.
[25] Xia, P. (2024). Research on control of quadrotor unmanned aerial vehicle system based on adaptive method[D]. Nanjing University of Information Science & Technology.
[26] Chen, G. D., Cheng, J. H., Zhang, X. F., & Liu, Z. Y. (2015). Adaptive Control with Reference to Flight Attitude Model of Quadrotor UAV[J]. Journal of Computer Systems and Applications, 2015, 24(1): 247-252.
[27] Wei, H. (2024). Research on cascade sliding mode control method of quadrotor UAV based on adaptive parameter estimation[D]. Jiangxi University of Science and Technology.
[28] Nekoukar, V., & Mahdian Dehkordi, N. (2021). Robust path tracking of a quadrotor using adaptive fuzzy terminal sliding mode control. Control Engineering Practice, 110, 104763.
[29] Fu, Y. G., & Zhang, T. L. (2021). Adaptive PID control of UAV based on fuzzy inference parameter optimization. Journal of Henan University (Natural Science Edition), 51(5), 554-562.