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Abstract: As is known to all, to strengthen
and refine the famous arithmetic-geometric-
harmonic mean inequality H (w, a) ≤ G (w,
a) ≤ A (w, a), it has been becoming the focus
of the theoretical research of inequality
from estimating the mean difference. the
difference between the two inequalities
mentioned above is estimated by using
variance, and these results are strengthened
or generalized by using a consistent proof
model.
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 is the weighted
arithmetic mean of a, where 0iw  1, 2, ,i n 
is the weight coefficient. For  0, na  , the
power mean of a with weight p is
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In particular,    1, ,A w a M w a ,

   0, ,G w a M w a

and    1, ,H w a M w a are the weighted
arithmetic, geometric, harmonic means of a
respectively.
When 1 2 1nw w w n    ,
we denote  ,pM w a ,  ,A w a ,  ,G w a and

 ,H w a by  pM a ,  A a ,  G a and  H a

respectively. Also denote
        , , ,p p p pM a M a M a M a  ,and similarly

denote  A a ,  G a and  H a .
As is known to all, to strengthen and refine the
famous arithmetic-geometric- harmonic mean
inequality

 ,H w a   ,G w a   ,A w a (1)
has been becoming the focus of the theoretical
research of inequality from estimating the
mean difference.
Let 0 m M  ,    1 2, , , , n

na a a a m M  , then
there are some beautiful conclusions about the
upper and lower bounds with the mean
difference of ( ) ( )A a G a . Such as in paper
“Analytic Inequalities” [1],
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In “A refinement of the arithmetic mean-
geometric mean inequality” and “Handbook of
Means and Their Inequalities” [2, 3], hold
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The results in “Problem 247” and “Epecaric J
and Fink A classical and new inequalities in
analysis” [4, 5] be equivalent to
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In fact, it is the special case of (4) when
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    . In “A New refinement of the

arithemetic mean-geometic mean inequality”
[6], the author also obtain
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Mercer in “Improved upper and lower bounds
for the difference of An-Gn” [7] respectively
strengthen (4) and (7) as follows
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There are many other forms of inequality on
A G , readers can refer to “Analytic
Inequalities” [1] and “Improved upper and
lower bounds for the difference of An-Gn” [7]

to “Some Refinements of Ky Fan's Inequality”
[8].
In “Sierpinski’s inequality” [9], Alzer, H prove
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In “A new method to prove and find analytic
inequalities” [10], above result was intensified
as follows: let 2
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In this paper, we will strengthen or popularize
(4)-(7) and (10), (11) by using aunanimous
model of proof, partial results have the similar
intensity with (8) and (9), but whose form is
more concise.

2. Relevant Result
Let nD R is a symmetric convex set
containing inner point, 1, 2, ,i n  ,
denote
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Lemma 2.1 Let  0,I  
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.

:
Def
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symmetric, and has continuous partial
derivative. If  1 2f x f x      permanent
holds in

1 2D D
  , then for

)),(()()(, aAfafIa n  and the equality
holds if and only if 1 2 na a a   .
If take the functional transformation in
lemma2. 1, we obtain the lemma 2.2 and
lemma 2.3 as follows, and the proof can refer
to “Problem 395” [11].
Lemma 2.2 Let  0,I   ,function

.

:
Def

nf I D R  is symmetric, and has
continuous partial derivative.
If  1 1 2 2x f x x f x      permanent holds

in 1 2D D
  ,then for ))(()()(, aGfafIa n 

and the equality holds if and only if
1 2 na a a   .

Proof. Set
  1 2ln ln ln , ln , ln |n n

nI a a a a a I  

 1 1: ln , , , nyy yng y I f e e e   ,
Then 11

1
1 1 1 1

ydxg f f fe x
y x dy x x
   

   
   

,

22
2

2 2 2 2

ydxg f f fe x
y x dy x x
   

   
    ,
When 1 2ln lny x D D    

 
, hold

 1 2
1 2 1 2

0g g f fx x
y y x x
   

    
   

.

According to lemma 2.1, for ln ln na I ,
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prove the left of (13).
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That is (4). For ∀wi (i = 1, 2, ..., n), as
irrational number is the limit of rational
number, so (4) hold as usual.
Theorem 3.3
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By lemma 2.1, for ∀  , na m M , f (a) ≥ f
(A(a)), that is the left of (14). Similarly, we
can prove the right of (14).
Remark 3.4 (15) is stronger than (6),

Higher Education and Practice Vol. 1 No. 3, 2024

76



when
1 2

1
nw w w

n
   , (13) is stronger than
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By lemma 2.2, for
∀  , na m M ,     f a f G a , that is the left
of (17). Similarly, we can prove the right of
(17).
Using the proof of remark 3.2, by the theorem
3.7, we get the following corollary:
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Remark 3.9 (18) is stronger than (5).

4. A Stronger Inequality (Alzer, H.)
In “Sierpinski’s inequality” [9], Alzer, H proved:
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so (19) is stronger than (10) and (11).

5. Conclusion
In this paper, we use this method to strengthen
and refine the famous arithmetic-geometric-
harmonic mean inequality, by employing
variance to estimate the difference between

above two inequality, and to strengthen or
popularize these results by using a unanimous
model of proof.
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