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Abstract: A Robotic Mobile Fulfillment
System (RMFS) is a novel "parts - to -
picker" automated order picking system. In
this system, robots are responsible for
transporting movable shelves to picking
stations for pickers. It is particularly suited
for e - commerce distribution centers that
handle a vast array of small products and
experience strong demand fluctuations. This
system plays an essential and decisive role in
enhancing logistics efficiency and reducing
warehouse costs significantly. This paper
reviews the optimization studies on RMFS
from 2017 to 2023. By adopting the three -
level framework of "strategy - tactical -
operational" to conduct this research, the
strategic level decision involves the layout of
the warehouse, like determining the
placement of picking station. The tactical
level decision focuses on resources allocation,
such as robots and inventory. The
operational level deals with the actual order
picking task, like optimizing the picking
sequence. Through this approach, decision -
making at different levels can be better and
more precisely clarified. and we summarize
the key factors influencing the efficiency at
each level. Eventually, this paper discovers
that the decisions within these three levels
are mutually influential. Hence, an in -
depth analysis of their impacts is carried out,
and detailed future research directions are
proposed.
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1. Introduction
The rise of e-commerce has created the need
for new warehousing systems to handle the
increase in orders efficiently [1]. Traditional
manual picking becomes inefficient due to the
small size and large variety of e-commerce
orders [2]. To overcome this, warehouses are

turning to automation, with the Robotic Mobile
Fulfillment System (RMFS) emerging as a key
solution [3,4]. RMFS, featuring mobile robots,
movable shelves, picking stations, and pickers,
streamlines the picking process and enhances
efficiency [5]. Despite growing interest and
research, comprehensive reviews on RMFS
remain limited.
We found 4 review articles related to RMFS,
Da Costa Barros and Nascimento reviewed
seven aspects of RMFS, including its system
architecture, scheduling, path planning, and
performance improvement by considering the
different functions and technologies of RMFS
[6]. However, that classification method may
cause different aspects to intersect with other
aspects of research at the same time, such as
performance improvement and the path
planning or scheduling. Indeed, Azadeh et al.[7]
mentioned the summary of RMFS in their
review of automated warehouses, which
classifies the literature into three aspects using
the perspectives of system design: system
analysis, design optimization, and operations
planning and control. That research
perspective is similar to the classification
perspective used in this paper, but still ignores
the interrelationships between the various
levels, The part of RMFS mentioned by
Jaghbeer et al. [8] in their review of automated
order picking systems also does not classify
them, but rather treats the system as a whole
entity, only focusing on the design and
performance optimization of RMFS, and the
studied links between design and performance.
Benavides-Robles et al. [9] classified the
Robotic Mobile Fulfillment System (RMFS)
into three subproblems: path planning, zoning,
and assignment, and summarized the
techniques currently applied to these problems.
Then compared to the reviews of the above
three cited scholars, this current paper has
three significant focuses and differences as
follows:
(1) Classifies the research on RMFS systems
into three levels: the strategic (warehouse
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layout), the tactical (resource allocation), and
the operational (order picking).
(2) Summarizes the influencing factors of each
level about the operation efficiency of RMFS.
(3) Explores the interrelationships among these
levels, and how they influence each other.
The rest of the paper is structured as follows:
Section 2 discusses the data collection, Section
3 review the literature and analyzes the
strategic, tactical, and operational factors
related to RMFS use and reveals the
interrelationships and links between the three
levels, Section 4 concludes with a summary,
Section 5 proposes the future research
directions.

2. Research Methods
To achieve our research goals, we conducted a
targeted search for RMFS-related studies. We
used "Robotic mobile fulfillment system" and
"RMFS" as keywords, searched in Scopus and
Google Scholar, and yielding 552 studies. We
then filtered these by focusing on English-

language, peer-reviewed journal articles from
2017 to 2023. After reviewing titles, abstracts,
and keywords, we narrowed down to 302
documents from Scopus and 75 from Google
Scholar. After removing duplicates and less
relevant documents, we selected 46 high-
quality papers closely related to RMFS
performance studies.
To achieve our research goals, we conducted a
targeted search for RMFS-related studies. We
used "Robotic mobile fulfillment system" and
"RMFS" as keywords, searched in Scopus and
Google Scholar. Eventually, 302 articles were
found on Scopus and 75 articles on Google
Scholar. First, 116 duplicate articles were
deleted. Secondly, 56 articles that were not
relevant to the theme and theoretical articles
were deleted. Finally, after titles, abstracts, and
keywords, and entire articles, 12 articles were
deleted. In the end, we selected 46 high-quality
papers closely related to RMFS performance
studies. (Figure 1 notes the process of
searching and filtering these studies).

Figure 1. The Collection Process Used for Article Searching and Selection in this Study

3. Results Analysis
Based on the classification methods mentioned
in Li et al. [10] and Merschformann et al. [11],
we categorized RMFS decision-making into
strategic, tactical, and operational levels. This

novel classification is based on decision
timeframes: strategic for long-term planning
over years to decades, tactical for medium-
term plans of months to a year, and operational
for daily system management, the overall
framework of the article is shown in Figure 2.
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Figure 2 Framework for Robotic Mobile Fulfillment System (RMFS) Research Categories

3.1 The Strategic Level
The layout of the RMFS is mainly considered
at the strategic level, three aspects are

summarized: the picking station location, the
storage area layout and the aisle deployment,
the specific contents of the summary are
shown in Table 1.

Table 1. Summary of Literature Related to the Strategic Level
Reference Objective Problem solved Influencing factors

[10] Maximize space utilization Low warehouse utilization Storage area layout
[12] Maximize order throughput Unreasonable warehouse layout Pick station location

[13] Minimize task
completion time Order arrival rates are uneven Pick station location

[14] Turnover time of order, system
throughput Low warehouse utilization Storage area layout

[15] Maximize order throughput Unreasonable warehouse layout Pick station location

[16] Maximize order throughput Poor space utilization of single-
level RMFS Storage area layout

[17] Maximize order throughput Unibidirectional path for
warehouses with low throughput Path mode

[18] Minimize the distance the robot
movement Excessively long picking paths Storage area layout

3.1.1 Picking station location
The location of the picking station
significantly impacts the robot's travel time
and the overall efficiency of RMFS operations.
Lamballais et al. [12] found that the position of
the picking station on both sides of the storage
area affects system throughput differently,
with zoning making a significant difference.
They discovered that placing workstations on
the two long sides outperforms other layouts,
and a width-to-length ratio of 0.5 seems
optimal for order throughput time with various
workstation configurations [13]. Setting more
picking stations in the direction of more aisles
facilitates robot access and reduces travel time
[14]. These studies indicate that locating
picking stations closer to the aisles enhances
RMFS operational efficiency. To minimize
robot travel distance and processing time, a
layout plan was proposed with picking stations
placed inside the storage area [15].
3.1.2 Storage area layout

To enhance space utilization in RMFS, vertical
storage area types, such as multi-level RMFS,
have been introduced [16]. In this system, each
layer uses conveyor belts to transport picked
items and consolidate split orders from
multiple picking stations, significantly
improving space utilization. Additionally, a
puzzle-based storage system (PBS) has been
proposed, where shelves are adjacent to the
aisles for direct item retrieval, using only half
the storage area for aisles. Experiments show
that the RMFS with a PBS layout can save an
average of 10% of storage space [10].
3.1.3 Aisle deployment
Research on picking station location and
storage area layout in RMFS has
predominantly focused on unidirectional aisle
patterns to prevent deadlocks. Luo and Zhao
introduced a bidirectional RMFS mode, which
achieves peak output with fewer robots [17].
Traditionally, RMFS aisles are straight and
parallel with right-angle intersections.
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However, Yang et al. [18] proposed a 'flying-v'
layout to reduce the total robot travel distance,
which was shown to save 8%-26% of travel
distance.

3.2 The Tactical Level
At the tactical level, the decisions are primarily
about resource allocation, including storage
allocation and robot management, the specific
contents of the summary are shown in Table 2.

Table 2. Summary of Literature Related to the Tactical Level

Reference Objective Problem solved Influencing
factors

[19] Maximize SKU similarity Unreasonable item storage location Inventory turnover
[20] Minimize task completion time Unreasonable item storage location Inventory turnover
[21] Minimize task completion time Unreasonable item storage location Inventory turnover
[22] Minimize robot movement time Unreasonable item storage location Inventory turnover
[23] Maximize SKU similarity Unreasonable item storage location Inventory turnover
[24] Maximize SKU similarity and order similarity Unreasonable item storage location Inventory turnover
[25] Minimize task completion time Picking lane congestion Robot utilization
[26] Maximize order throughput Order prioritization management Robot utilization
[27] Minimize system operating costs human picking error Inventory turnover

3.2.1 Storage allocation
To minimize shelf movements and robot travel
distance, it is essential to establish rules for
item storage allocation, which determine the
placement of shelves and areas for items. Ma
et al. [19] introduced a scattered storage policy
for RMFS, taking into account SKU
classification, correlation, and inventory
dispersion. Keung et al. [20] proposed a data-
driven approach for RMFS region allocation
using clustering and storage location
assignment. Lamballais et al. [21] suggested
dispersing inventory across multiple shelves to
locate items closer to picking stations. Cezik et
al. [22] modelled policies based on unit
velocity, stowing higher velocity units on
higher velocity pods, which resulted in
significant travel-time reduction. Kim et al. [23]
recommended placing frequently ordered items
on the same shelf to reduce shelf movements.
Additionally, some scholars conduct research
by comprehensively considering multiple
factors. Yang[24], for instance, studied the
combined optimization strategy of item storage
and order batching, aiming to minimize the
robot's movement time by leveraging the
similarity of items and orders in experiments.
Overall, these joint research strategies offer a
more comprehensive and efficient solution for
RMFS by holistically considering multiple
factors.
3.2.2 Robot management
For the robot’s management, the main

attention is paid to the determination of their
number and battery management. The optimal
number of robots in RMFS is key to balancing
operational efficiency and costs. Chi et al.
[25]suggest that the ideal number of AGVs
should match task demands and arrival rates.
Gong et al. [26] categorized orders into
expedited and standard deliveries to determine
the minimum robot requirement. In recent
years, there have been few studies on the
charging strategy of robots in RMFS. Zou et al.
[2]compared the three strategies of battery
swapping, inductive charging, and plug-in
charging, and concluded that for system
throughput time and performance indicators,
inductive charging had the best performance,
and the battery swapping strategy was better
than automatic plug-in charging. Still, the
annual cost of inductive charging was also
cost-effective than the cost of the other two
strategies [27].

3.3 Operational Level
The decision-making problems at the
operational level are divided into single
optimization strategy research and joint
optimization strategy research. Single
optimization focuses on improving one aspect,
while joint optimization aims to enhance
overall performance by considering multiple
factors simultaneously, the specific contents of
the summary are shown in Table 3.

Table 3. Summary of Literature Related to the Operational Level
Reference Objective Problem solved Influencing factors

[3] Minimize task completion time Changes in order volume The length and height of
the order volume
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[28] Minimize task completion time Uneven task distribution Relevance of the task

[29] Minimize the distance the robot
movement Dynamic changes in orders Order picking time

[31] Maximize robot utilization Storage area partitions Order picking time
[32] Minimize task completion time Crowded roads inside warehouses Order picking time

[33] Minimizes the energy consumption of
the robot Energy-consuming robots Robot movement time

[34] Minimize the probability of deadlocks Traffic jams on picking roads Robot movement time
[35] Minimize task completion time Inefficient order picking Order picking time
[36] Minimize the number of shelves Inefficient order picking Order picking time
[37] Minimize task completion time Inefficient order picking Order picking time
[38] Minimize task completion time Inefficient order picking Order picking time
[39] Minimize task completion time Long decision-making time Order picking time
[41] the number of pod visits Robots operate inefficiently Robot movement distance

[42] Mining the total operation cost Local optimization efficiency
cannot be maximized Robot movement distance

3.3.1 Order allocation
In RMFS, order allocation is crucial for
fulfillment efficiency and impacts robot
scheduling. Yuan et al. [28] studied a task
allocation method applicable to small and
medium-sized e-commerce enterprises, and
proposed a task time cost model that considers
task relevance and can significantly improve
the task allocation efficiency. However,
dynamics and uncertainties should be taken
into account for task assignment in large-scale
and variable application scenarios. Therefore,
to be more realistic, many scholars add more
uncertainties to the comprehensive analysis.
Lamballais et al. found that dynamically
reallocating resources based on workload
outperforms traditional strategies under
varying demand [3]; Li et al. [29] developed a
model where robots can participate in task
allocation, enhancing the number of orders
picked and reducing travel when idle.
3.3.2 Path planning/scheduling
The aim of this research is to ensure that the
robot has no collisions during driving. In order
to find the movement path of the robot more
quickly, Luo et al. proposed an AG-DQN
algorithm that can find the shortest path in less
time based on the changing scenes and narrow
spaces of RMFS. Gharehgozli and Zaerpour
[30] investigated robot scheduling for fulfilling
multiple customer orders from a single picking
station, prioritizing tasks based on order
urgency. Roy et al. [31] compared dedicated
and pooled robots, finding that pooled robots
reduce order-picking throughput time but may
affect replenishment times. Sun et al. [32]
proposed an interference-free, bidirectional
AV scheduling approach using the A*
algorithm, which was more efficient than

unidirectional paths for small RMFS. Zhou and
Zhu[33] focused on green scheduling for
mobile robots, aiming to minimize energy
consumption. Li and Fan[34] developed a
cellular automata-based RMFS simulation
framework (SFRMFSCA) to improve picking
efficiency by reducing the risk of large-scale
deadlocks with adaptive traffic light control
strategies.
3.3.3 Joint optimization strategy
In order to obtain the global optimal order
picking scheme, many scholars have begun to
jointly optimize multiple aspects. For example,
Xie et al. [35] focus on decisions about order
and shelf allocation, and proposed a new MIP
model to integrate both decision problems;
Valle and Beasley[36] incorporated shelf
sequencing to the previous two research areas,
and divided the problem into two sub-
problems, still the split order was not
considered. Wang et al. [37] extended Valle's
research to allow shelves to be accessed at
multiple picking stations during the picking
process and proposed a two-stage hybrid
heuristic algorithm framework to solve this
problem; Boysen et al. [38] then studied the
order and shelf sequencing problems,
providing a decomposition program for
simulated annealing to solve these two
problems, respectively. Justkowiak[39] and
Pesch introduced a mixed integer
programming model with a polyhedral
heuristic for medium-sized instances. Building
on this foundation, Yang et al. [40] combined
shelf allocation into a MIP model, and found
that joint optimization can reduce the robot
task by 50.8% and 32.0%, respectively. Teck
and Dewil[41] conducted more research,
considering the above problems and robot
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scheduling, finding that joint optimization can
save 10% of the operating cost. However, this
proposed model is only applicable to small-
scale examples and is not feasible for practical
application. Zhang et al. [42] studied the joint
optimization problem of order sequencing and
robot scheduling, and numerical experiments
showed that the MINLP model is helpful for
saving costs. It can be seen that the order
picking sequence and robot scheduling are
interrelated.

3.4. Connection Between the Three Level
After conducting a literature review on the
strategic, tactical, and operational levels of
RMFS, we learned that these three levels are
indeed closely interconnected. Therefore, we
will further analyze their interplay.
3.4.1 Strategic level → Tactical level,
Operational level
At the strategic level, the overall layout of the
warehouse is planned. This process provides
the basis for a spatial structure at the tactical
level, allowing for a more efficient deployment
of resources. For example, the RMFS fishbone
layout proposed by Wang et al. allows robots
to travel not only through vertical and
horizontal aisles but also through diagonal
aisles, effectively reducing the travel distance
for shelf allocation optimization by 20% [43].
Yang et al. [14] analysed the impact of the
number of robots on system performance in
single-depth and multi-depth compact layouts,
and believe that under the premise of meeting
the requirements of the shelf layout, setting up
more vacancies can improve the utilization rate
of robots. The above two studies have shown
how the tactical level affects the system
performance from a strategic level; The layout
also has a direct impact on the efficiency and
process of order picking. Li et al. [44] studied
the influence of different warehouse layouts on
the path optimization problem in the case of
warehouse layout based on bidirectional
channel and cross channel. Luo et al applied
the proposed algorithm to 5 different RMFS
model layouts for simulation operations when
exploring the shortest path of the robot [4].
Based on the multi-layer RMFS layout,
Tadumadze et al. studied the joint optimization
of order arrangement and shelf arrangement
[16].
3.4.2 Tactical Level → Operational Level
Inventory management and robot management

decisions at the tactical level ensure that there
are sufficient resources at the operational level
to carry out the tasks. For example, when Bolu
and Korcak[45] studied order assignment, they
considered the robot's battery level and
inventory status; Merschformann et al.
evaluated the impact of these operational-level
decisions on the system throughput by
changing the number of robots and the number
of SKUs when studying the joint optimization
of order scheduling and shelf scheduling [11];
Li et al. mentioned in their study that in the
case of a high-density warehouse layout, the
higher the warehouse utilization rate would be,
and a certain level of efficiency would be
maintained [10].
3.4.3 Operational Level → Strategy Level,
Tactical Level
The operational level in RMFS oversees order
fulfilment and provides critical data and
feedback to strategic and tactical decision-
making. Real-time data generated includes
robot travel distances and order picking times.
Zhu and Li[46] emphasize the importance of
managing the number of robots to match
operational performance and order arrival rates,
thereby reducing maintenance costs. Yang et al.
[18] used travel distance to optimize picking
station positions between layouts, while Yuan
et al. [28] determined optimal robot numbers
and capacities based on order urgency. Kim et
al. [23] proposed storage plans based on item
similarity to minimize robot movement and
shelf interactions. Chi et al. [25] stress the
need to consider task arrival rates when
determining the number of robots. This data
facilitates flexible adjustments and
optimizations across all levels, reflecting the
operational impact on strategic and tactical
planning.

4. Conclusions
This paper examines RMFS in e-commerce
warehouses by reviewing 46 articles from
2017 to 2023. It reveals the multi-level
decision-making structures and their
interconnections within RMFS, through a
framework of strategy, tactics, and operations.
The goal is to optimize tasks and environments
within RMFS, enhancing operational
efficiency and customer satisfaction.
In this system, information flows among the
strategic, tactical, and operational levels to
create a dynamic feedback loop. The strategic
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level offers a spatial structure for the other two
levels. Meanwhile, the allocation of resources
at the tactical level guarantees the successful
execution of specific picking tasks at the
operational level. This operational level, in
turn, influences the adjustment and
optimization at the strategic and tactical levels
through the utilization of real-time data and
process feedback. This combination forms a
decision-making chain that extends from long-
term planning to medium-term resource
allocation and then to specific implementation.
The establishment of this decision-making
chain endows managers with the ability to
respond to change more rapidly and more
flexibly. Real-time data and feedback from the
operational level enable managers to make
practical and effective decisions in a shorter
period of time. This rapid feedback loop helps
reduce risk, optimize resource utilization, and
enhance the adaptability of the entire system.
The multi-level decision-making structure is
not limited to RMFS. It offers managers a
reference for applying it across different
environments and industries to enhance their
systems' responsiveness to complex challenges.

5. Future Research Directions
Future research in RMFS should focus on:
(1) Given the interconnection between
strategic, tactical, and operational levels, joint
optimization is of crucial importance for cost
reduction and efficiency enhancement. Future
studies can explore multi-objective
optimization methods to balance system
performance and coordinate different
optimization objectives across levels to
achieve the best combined benefits.
(2) Future algorithmic solutions could combine
deep learning models, which can understand
problem structures and features, with
optimization algorithms for global search and
efficient convergence. This hybrid approach
may improve algorithmic performance and
adaptability.
(3) Despite the focus on automation, the
human role in the picking process is significant.
Research should explore closer collaboration
between AI systems and human operators,
particularly in scenarios requiring direct
human-robot interaction.
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