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ABSTRACT: Detecting gastrointestinal (GI)
tract cancers accurately remains essential
for improved radiotherapy outcomes. This
study introduces an innovative deep
learning model for automated segmentation
of GI regions within MRI scans, featuring
an architecture that combines Inception-V4
for classification, a UNet++ with VGG19
encoder for 2.5D segmentation, and an Edge
UNet optimized for grayscale images.
Detailed data preprocessing, including 2.5D
data handling, is employed to enhance
segmentation  precision. Qur  model
addresses the limitations of manual
segmentation by providing a streamlined,
high-accuracy solution that captures
complex GI structures crucial for treatment
planning.
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1. Introduction

Gastrointestinal (GI) cancers, encompassing
malignancies within the stomach, colon,
rectum, and small intestine, represent a
significant challenge in global healthcare due
to their high incidence and complex treatment
require- ments. Radiotherapy is one of the
primary treatment options for GI cancers, as it
allows for precise delivery of radiation to
targeted tumor areas while preserving
surrounding  healthy tissues. Recent
advancements, such as Magnetic Resonance
Linear Accelerator (MR-Linac) systems,
enable real-time imaging during radiotherapy,
providing clinicians with the flexibility to
adapt to shifts in tumor or organ position.
Despite  these innovations, effective
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radiotherapy planning still depends heavily on
accurate segmentation of GI organs within
magnetic resonance imaging (MRI) scans, a
process that remains predominantly manual.
Manual delineation of GI organs is labor-
intensive and requires significant expertise.
This segmentation pro- cess is also prone to
inter-operator  variability, where different
clinicians may  produce inconsistent
segmentations for the same patient, impacting
treatment precision. Therefore, a streamlined,
automated segmentation ap- proach is essential
to optimize radiotherapy planning and ensure
uniformity across clinical practices. However,
the unique anatomy of the GI tract, which
includes organs that are highly variable in size,
shape, and structure, presents a distinct
challenge for automated segmentation models.
Machine learning, particularly deep learning,
has gained prominence in medical imaging due
to its ability to handle complex data patterns.
Convolutional neural networks (CNNs) and
other deep learning architectures have
achieved substantial success in tasks like
image classification and segmentation.
Although general models like U-Net and its
variants have shown effectiveness in medical
segmentation, they often struggle to handle the
anatomical diversity and fine structural details
necessary for accurate GI tract segmentation.
Moreover, the diversity of MRI scan types,
including variations in resolution and slice
thickness, adds to the complexity of designing
a model that is both adaptable and robust.

In response to these challenges, this study
introduces a comprehensive, automated
approach for GI tract seg- mentation in MRI
scans. Our model integrates a hybrid of
advanced neural network architectures, each
selected for its unique strengths in addressing
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specific aspects of the segmentation task. The
primary contributions of this work are as
follows Advanced Architecture Integration:
We develop a hybrid model combining three
state-of-the-art architectures: Inception-V4 for
initial organ classification, UNet++ with
VGG19 encoder for 2.5D data processing, and
Edge UNet for precise grayscale segmentation.
This ensemble approach enables the model to
capture diverse structural details of the GI
organs, providing a more comprehensive
solution than existing single-architecture
models.

Enhanced Data Preprocessing: Recognizing
the variability in MRI data, we implement a
robust pre- processing pipeline, including
spatial and intensity augmentation techniques
tailored for GI imaging. Addi- tionally, we
incorporate a 2.5D processing method that
utilizes depth information from consecutive
slices, offering a richer representation of
anatomical context compared to traditional 2D
methods.

Reduction in Inter-Operator Variability: By
automating the segmentation process, our
model aims to minimize variability across
different practitioners, thus ensuring consistent
delineation of GI organs and enhancing
treatment planning reliability.

Optimized Workflow for Radiotherapy
Planning: This work provides a solution that
has potential to significantly reduce the time
and effort required by clinicians in
radiotherapy planning, allowing for faster and
more accurate treatment workflows. The
integration of deep learning architectures
tailored for specific tasks within the
segmentation pipeline marks a significant step
forward in radiotherapy applications.

This paper is structured as follows: Section ??
reviews recent developments in medical image
segmentation with a focus on GI tract imaging.
Section ?? outlines the proposed methodology,
including the specific neural network
architectures and  data  preprocessing
techniques employed. Section ?? presents
experimental results, with an evaluation of the
model’s performance across different MRI
data types, followed by a discussion in Section.
This work ultimately contributes to the field by
providing a practical and effective tool that can
support clinicians in achieving precise,
automated GI tract segmentation, offering
potential improvements in both radiotherapy
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planning and patient outcomes.

2. Related Work

The field of medical image segmentation,
especially within gastrointestinal (GI) cancer
diagnosis and treatment, has evolved with
substantial contributions from deep learning
approaches, particularly in  automating
segmenta- tion tasks. This review covers the
foundational methodologies and breakthroughs,
which form the basis for our model.

Kocak et al.l explored the role of deep
learning in medical imaging segmentation,
with a focus on enhanc- ing interpretability to
support clinical decision-making. This work
provided foundational insights into the use of
neural networks in medical imaging. Zhou et
al.2 demonstrated the effectiveness of U-Net
for capturing spatial context, highlighting its
utility in medical imaging tasks that require
high detail. Building on model efficiency, Lu
et al.3 introduced a processor for analyzing
power consumption in data cycles, showcasing
the importance of preprocessing in reliable
modeling outcomes. In segmentation tasks,
Edge U-Net was enhanced with Holistically-
Nested Edge Detection (HED),4 focusing on
edge detection for better boundary preservation
in complex structures.

Developments in intelligent systems also
inform medical imaging. Tianbo et al.5
designed a swarm intelligence system
integrating adaptive control and object
recognition, illustrating how autonomous
systems can enhance robustness. Zhang et al.6
applied a transformer module with evidential
learning for pedestrian intent prediction,
introducing interpretability enhancements that
are advantageous for medical imaging. In
addressing imbalanced datasets, Chen et al.7
proposed a two-stage classification strategy,
improving feature alignment in medical
segmentation, which inspired our multi-path
approach.

Maccioni et al.8 discussed challenges in GI
tract segmentation due to anatomical variation,
emphasizing the need for adaptable
segmentation models in radiotherapy planning.
The U-Net architecture by Ronneberger et al.,9
designed for biomedical segmentation,
introduced skip connections that retain spatial
information critical in medical imaging.
Expanding on this, the VGG architecture by
Simonyan and Zisserman10 contributed a deep
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convolutional structure that serves as a reliable
encoder for image recognition tasks.

In terms of reducing computational complexity,
Szegedy et al.11 enhanced the Inception model
series, making it suitable for complex
segmentation tasks that demand efficient
processing. SegNetl2 introduced an encoder-
decoder architecture that facilitated image
segmentation through efficient down-sampling
and up-sampling opera- tions, influencing
segmentation tasks requiring high-resolution
retention. Expanding beyond biomedical
imaging, Zhang et al.13 presented a machine
vision-based manipulator control system for
robotics, highlighting precision handling
techniques applicable to segmentation.

In breast cancer detection, Zhang et al.14
advanced binary classification by using novel
pooling techniques, enhancing model accuracy.
For face recognition, Liao et al.15 proposed
the Attention Selective Network (ASN) to
manage pose variations, a concept that can
focus on clinically significant regions in
medical images. Linl6 introduced a
framework for Bruch’s membrane
segmentation in OCT images, supporting
biomarker tracking in retinal diseases, which is
relevant for improving segmentation in
diagnostic imaging.

T Xiao et al.17 developed dGLCN, a dual-
graph network, for Alzheimer’s diagnosis,
demonstrating  how graph structures can
enhance segmentation interpretability. In the
field of point cloud classification, Hu et al.18
introduced M-GCN, leveraging multi-scale
graph convolutional techniques for better
feature fusion, which aligns with our focus on
multi-dimensional data processing. Zeng et
al.19 presented a two-phase Alzheimer’s
diagnostic framework, emphasizing feature
alignment, a principle adapted in our
preprocessing techniques.

In OCT technology, Chen et al.20 developed
long-range SS-OCT for anterior eye imaging,
facilitating detailed imaging useful in
segmentation applications. Chen et al.2l
further applied ultrahigh-resolution OCT for
distin- guishing age-related changes in the
retina, showcasing advancements that can be
adapted to GI segmentation by emphasizing
high-resolution boundaries. Quintana et al.22
introduced a method for scleral lens fitting
based on OCT imaging, which accurately
identifies transitional boundaries, an approach
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directly relevant for segmenting GI tract
organs with complex structures.

Additionally, Wang and Xia23 proposed a
volatility derivative framework, incorporating
stochastic processes, to enhance model
reliability in financial analysis, offering
insights into model stability that influenced our
en- semble design.

These works, while contributing valuable
advancements, do not fully address the unique
demands of GI tract segmentation. Our study
builds on these foundations by introducing a
multi-path approach that combines advanced
architectures, targeted preprocessing, and
robust ensemble techniques, specifically
designed to enhance segmentation precision
and efficiency in GI imaging.

3. METHODOLOGY

Our approach integrates multiple deep learning
architectures in a synergistic model,
specifically designed to address the challenges
associated with gastrointestinal (GI) tract
segmentation in MRI. By utilizing distinct
architectures  for  classification, 2.5D
processing, and grayscale segmentation, our
model captures both high-level classification
and fine-grained details necessary for accurate
segmentation.

3.1 Model Architecture Overview

The proposed model comprises three
interdependent pathways, each optimized for a
unique aspect of the seg- mentation task.
Illustrated in Figure 1, the architecture is
designed to leverage the combined strengths of
Inception-V4, UNet++ with VGG19 encoding,
and Edge U-Net to achieve comprehensive
segmentation cover- age across various MRI
data types.
3.1.1Inception-V4
Classification
The first pathway employs the Inception-V4
architecture, a model known for efficiently
processing complex image patterns. In our
segmentation pipeline, Inception-V4 serves as
the initial classifier, identifying key anatomical
regions in MRI scans such as the colon, small
intestine, and stomach. Only when these
regions are detected does the model proceed to
more detailed segmentation; otherwise, a blank
mask is generated, streamlining the process
and optimizing computational resources.

Pathway  for  Initial
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Workflow of the proposed methodology
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Figure 1. Overview of Model Architecture
3.1.22.5D UNet++ Pathway with VGGI19

Encoder

For enhanced spatial awareness, the second
pathway uses a 2.5D approach by stacking
consecutive MRI slices to generate a multi-
dimensional context. This 2.5D representation
is processed using UNet++ with a VGG19
encoder, where the architecture captures
intricate anatomical features while preserving
essential contextual information. This pathway
excels in segmenting regions with complex
boundaries, enhancing  overall = model
robustness.

3.1.3Edge U-Net for Grayscale Segmentation
The third pathway focuses on grayscale image
processing, integrating an Edge U-Net
framework equipped with Holistically-Nested
Edge Detection (HED). This pathway detects
edges and contours more effectively in
grayscale data, which simplifies computational
requirements and improves segmentation
accuracy for organ boundaries. Grayscale data
is particularly useful for highlighting edges
without the interference of color information.
The outputs from each pathway are aggregated
by averaging, which produces a unified
segmentation map that combines both broad
anatomical context and fine boundary detail.
This ensemble approach ensures that each
architecture contributes its strengths to the
final segmentation result.

3.2 Data Preprocessing

To optimize model performance and ensure
adaptability to diverse imaging conditions, a
tailored data prepro- cessing pipeline was
developed. As depicted in Figure 2, the
preprocessing process includes both spatial and
intensity augmentations, aimed at enhancing
model  generalization and  improving
segmentation accuracy across various MRI
datasets.
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3.2.1Spatial Augmentation Process

The spatial augmentation step standardizes the
resolution of all input images to 320x384
pixels, facilitating consistency in feature
extraction. Augmentation techniques,
including random rotations, horizontal
flipping, and elastic deformations, are applied
to simulate various imaging conditions. These
augmentations expand the training data and
improve the model’s resilience to distortions,
occlusions, and positional variations in the
target organs.

3.2.2Intensity Augmentation for Grayscale
Images

A separate intensity augmentation process is
applied to grayscale images to enhance the
model’s sensitivity to pixel-level variations,
which are crucial for boundary detection. This
step includes adjustments to brightness,
contrast, and intensity, creating a richer dataset
that enables the model to capture subtle
features in grayscale MRI scans. These
intensity adjustments support improved edge

detection in grayscale images.
Data Preprocessing

Resizing Image -
320x384x1 Augmentation Grayscale Image
2.5D Image =
s 4’( Au merﬁahon » 25D Image ‘
320x384x3 ¢

Image Augmentation

Horizontal Flip H Image Rotation |—>| Elastic Transform H Coarse Dropout

Figure 2. Data Preprocessing Workflow

3.2.32.5D Image Processing for Enhanced
Context
In the 2.5D pathway, consecutive MRI slices
are stacked to provide the model with added
spatial context. This pseudo-3D representation
combines depth information across slices
without the computational demands of a full
3D model. This technique preserves key
features between slices and enriches contextual
detail, making it particularly effective in
segmenting the GI tract’s layered structures.
Following augmentation, 2.5D images are
input into the UNet++ pathway, enhancing the
segmentation model’s ability to handle
complex anatomical boundaries.
To facilitate visual analysis and mask
generation, regions are converted from 16-bit
RLE encoding to pixel data, as illustrated in
Figure 3. This approach enables enhanced
visualization and validation of labeled regions
within MRI scans.
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Figure 4. Edge U-Net Architecture with HED

3.3 Model Architectures

3.3.1Inception-V4 for Initial Classification
Inception-V4,  developed for complex
classification tasks, is used in our model as the
initial classification layer. Designed to reduce
computational load while retaining high
accuracy, Inception-V4 incorporates various
filter sizes, batch normalization, and residual
connections, which together enable it to
efficiently identify large-scale anatomical
regions within MRI scans. These design
elements facilitate the preliminary
classification  that  guides  subsequent
segmentation processes.

3.3.2UNet++ with VGG19 Encoder for 2.5D
Segmentation

Our segmentation architecture combines
UNet++ with a VGG19 encoder to balance
depth and detail. The VGGI19 encoder
extracts high-resolution features from the 2.5D
image input, while UNet++’s nested skip con-
nections allow for intricate feature integration
across scales. These skip connections
effectively maintain fine structural details,
providing enhanced segmentation accuracy for
GI regions with complex anatomy.

3.3.3Edge U-Net with HED for Grayscale Data
The Edge U-Net module is specifically
designed to capture clear edges in grayscale
MRI images. By incorporating HED, Edge U-
Net can identify boundary features at multiple
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scales, as illustrated in Figure 4. The
MBconv blocks in Edge U-Net allow for
efficient processing while preserving edge
integrity, which is critical for precise GI organ
delineation.

3.4 Training and Parameter Settings

To optimize learning, the model is trained
with a batch size of 16 and an initial learning
rate of 0.001. An adaptive learning rate
scheduler, coupled with the Adam optimizer,
adjusts the rate throughout the training process.
Training is conducted over 50 epochs, with
early stopping applied if the validation loss
does not improve over 10 consecutive epochs.
These settings balance model performance and
training efficiency.

3.5 Evaluation Metrics
3.5.1Dice Coefficient (DC)
The Dice Coefficient measures the similarity
between predicted and actual segmentations,
providing an overlap- based evaluation metric
for segmentation quality. It is computed as:
where PM and OM represent the predicted and
ground truth masks, respectively.
X
( . )= 2xl a1
N

3.5.23D Hausdorff Distance
The 3D Hausdorff Distance captures spatial
dissimilarity between two segmentation masks
by measuring the maximum separation

#(1)
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between the closest points in the predicted and
ground truth masks:

« )=max<maxmin(| - |))#(2)

This metric assesses the spatial accuracy of the
segmentation, crucial for precise anatomical
delineation.
3.5.3Composite Score
Combining Dice Coefficient and 3D Hausdorff
Distance, a composite score evaluates overall
segmentation per- formance:
Score = 0.4 x Dice Coefficient + 0.6 x 3D

Hausdorff Distance 3)
This score provides a balanced view of model
accuracy and robustness in delineating
complex GI structures.
4. Experimental Results
Our proposed model was rigorously evaluated
on both grayscale and 2.5D MRI datasets to
assess its segmentation performance across
different configurations. Results for each
model architecture are presented below,
highlighting the comparative advantages of
each approach.

4.1 Dataset Description

The dataset used in this study includes MRI
scans of the GI tract, annotated for key regions
such as the colon, small intestine, and stomach.
This dataset, divided into training and
validation sets, was sourced from multiple
institutions to ensure diversity and robustness
in model evaluation.

4.2 Results on Grayscale Images

In the grayscale image experiments, different
encoders were tested within the UNet and
UNet++ architectures, alongside Edge U-Net
as a baseline for edge-focused segmentation.
The validation results are shown in Table 1.

Table 1. Grayscale Image Segmentation Results

Model Encoder Validation Score
UNet ResNet50 0.71599
UNet Inception-V4 0.71002
UNet Xception 0.73761
UNet EfficientNet-B0 0.68033
UNet VGG19 0.78925
UNet++ ResNet50 0.7899
UNet++ Inception-V4 0.80095
UNet++ Xception 0.79711
UNet++ | EfficientNet-B0O 0.71372
UNet++ VGGI19 0.80717
Edge UNet - 0.84046

Edge U-Net achieved the highest score for
grayscale images, reaching a validation
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accuracy of 0.84046, outper- forming both
UNet and UNet++ configurations. The high
performance of Edge U-Net suggests that
edge-focused architectures are particularly
suited for grayscale MRI data, where precise
boundary detection is critical.

4.3 Results on 2.5D Images
In the 2.5D image experiments, UNet++ with
various encoder configurations was evaluated.
Validation scores are presented in Table 2.
Table 2: 2.5D Image Segmentation Results
Model | Encoder | Validation Score
UNet++ | ResNet50 0.80138
UNet++ | Xception 0.7961
UNet++ | VGGI9 0.84984
For 2.5D images, UNet++ with the VGGI19
encoder showed the best performance,
achieving a validation score of 0.84984. This
demonstrates the value of combining VGG19’s
feature extraction capabilities with 2.5D data
to capture contextual depth, which enhances
segmentation quality in regions with complex
anatomical structures.

5. Conclusion

This study presents a comprehensive,
automated approach for gastrointestinal (GI)
tract segmentation in MRI scans, integrating
advanced deep learning architectures to
address the unique challenges associated with
medical imaging for radiotherapy planning.
By combining Inception-V4 for initial
classification, UNet++ with VGG19 for 2.5D
data processing, and Edge U-Net for edge-
focused grayscale segmentation, the model
achieves high segmentation accuracy across
different MRI data types.

The experimental results demonstrate that
Edge U-Net is particularly effective in
grayscale segmentation tasks due to its edge
detection capabilities, while UNet++ with
VGGI19 excels in 2.5D data processing,
bene- fiting from additional depth context in
the MRI slices. These complementary
strengths support a multi-path approach,
enabling precise segmentation across diverse
imaging scenarios and reducing the inter-
observer vari- ability commonly associated
with manual segmentation.

This work contributes to the field by offering a
flexible,  high-performance  segmentation
solution tailored for GI imaging, ultimately
aimed at improving the efficiency and
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consistency of radiotherapy planning. Future
work may focus on further refining the
ensemble model and exploring its application
to other types of medical imaging to expand its
utility in clinical practice.
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