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Abstract: The increasingly developing
society has put forward higher
requirements for the inspection speed of
products. In order to meet the requirements
for the increase of product life detection
rate, the accelerated life experiment came
into being. The purpose of this paper is to
study the relationship between voltage and
life, using the method of linear regression,
through the assumption of a
semi-parameter to the whole, to analyze all
the data. And because the relationship
between voltage and life conforms to the
inverse power law model, the experiment is
carried out.
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1. Introduction
With the intensifying global competition,
manufacturers face immense pressure to
produce products that offer more features and
greater reliability, while reducing costs and
delivery times [1]. Accelerated testing is
gaining traction in the industry for its ability to
rapidly gather life data. By subjecting products
to higher stress levels without introducing
additional failure modes, significant time and
cost savings can be achieved [2]. Accelerated
Life Testing (ALT) is utilized to assess
product reliability by applying increased stress,
and statistical analysis of ALT data involves
fitting a model to data from these high-stress
conditions and extrapolating it to normal use
conditions. Prior to ALT, a comprehensive test
plan is crafted, detailing stress types,
application methods, stress levels, the number
of units to test at each level, and a suitable
model that links accelerated condition failures
to normal condition failures [3]. Current life
evaluation methods include actual life testing
under typical conditions and model-based
assessments [4]. American researchers

developed methods like Highly Accelerated
Life Testing (HALT) and Highly Accelerated
Stress Screening (HASS) to quickly reveal
design weaknesses and manufacturing defects.
These methods apply extreme stress beyond
design specifications in a stepwise manner to
identify and eliminate defects, known as the
stepping stress test method [5]. Ideally, models
should be grounded in physical or chemical
theories and validated empirically. In the
absence of such theories, empirical models
based on extensive experience with failure
mechanisms can be used for extrapolation [6].
ALT is typically performed under constant
stresses, which require lengthy periods at low
stress levels to gather sufficient failure data.
Ramp-stress loadings can yield faster failure
times compared to constant stresses, though
their reliability prediction accuracy remains
unverified. We develop test plans with varying
stress applications to match the statistical
precision of constant-stress predictions [7].
Key experimental factors include humidity,
voltage, electrical current, temperature, and
thermal cycling. Voltage stress, which
measures voltage per unit thickness of a
dielectric, can lead to insulation breakdown if
it exceeds certain levels. This breakdown
occurs at weak points in the material, where
dielectric strength is low, and generally, higher
voltage shortens insulation life [8]. Voltage
induces an electrical current, and stronger
electric fields can accelerate the degradation of
dielectric components, causing failures due to
growing discontinuities or electrochemical
reactions [9]. The inverse power relationship
often describes how stresses like voltage affect
lifetime. This paper collects failure time data
under varying voltages through ALT, analyzes
it to determine the life-voltage relationship,
and uses statistical methods and regression
analysis to estimate parameters in the inverse
power law model. The findings provide crucial
insights for product design and reliability
evaluation, employing linear regression and a
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semi-parametric approach for robustness [10].
The section 2 introduces the specific
experimental methods of this experiment. In
section 3, simulation is used to prove the
consistency and asymptotic normality of the
method. The section 4 is the analysis of the
real data. Finally, the section 5 summarizes the
experimental contents and draws a conclusion.

2. Methodology
The accelerated life experiment should follow
the principle of selecting the appropriate
acceleration factor intensity level without
changing the failure mechanism of the battery.
In this
experiment, voltage is used as the acceleration
factor to charge and discharge the battery
cycle, and the method of constant current
charge and discharge is adopted. When the

voltage is the single stress factor, the three
voltages are selected to be arranged in an
ascending
order of 80V, 100V, 120V. The control
variable method was used in the test to ensure
that
other acceleration factors were at the standard
level. The relationship between the lifetime
and voltage is the power law, that is: T = �

�� .
By taking the logarithm of lifetime, we have
log (�) = log (�) + blog (�), where b = −B.
3 test groups are assumed here with V = 80,
100, 120 respectively, and we have Ni units in
the ith group. We used a scale distribution
family to
describe the lifetime distribution in each group.
The lifetime character in each test group is
represented only by the scale parameter �� .
Therefore, an linear regression model

log (���) = log (A) + blog (��) + ϵ��, i = 1, 2, 3, j = 1, 2, ..., �� (1)
can be used to estimate the parameters log (A)
and b. Since the lifetimes follow a scale
distribution family with different scale
parameter and the stress factor will not
influence
other parameters, the condition of the
Gauss-Markov theorem is satisfied. Therefore,
the
least square method can derive the best linear
unbiased estimator, which gives accuracy of
the estimate. In addition, the asymptotic
normality is satisfied under the Gauss-Markov
theorem, which means we can derive statistical
inference of parameters by the normality of

them. Since the parameter estimate process is
semi-parametric, we do not assume a specific
distribution family here, then we have to use
acceleration factor �� = ( �

�' )B to complete
the
reliability estimate.

3. Simulation Study

3.1 Simulation Setting
The Table 1 shows the simulation results.
These data use the Weibull (α, �� ) and
Lognormal (�� ,σ2)，which the sample size per
group N=80, 100, 120 and α=4, σ=0.25.

Table 1. True Parameter Value
Setting log (�) b �� 80 �� 100 �� 120
Value 20.40 -2.73 3.61 6.63 10.91

3.2 MSE result
Table 2 . Bias and MSE Table of Lognormal Distribution

Lognormal log (�) b �� 80 �� 100 �� 120
��=20 Bias 0.0049 -0.0011 0.0174 0.0673 0.1742

MSE 0.8176 0.0387 0.1132 0.8483 3.7380
��=40 Bias -0.0032 0.0007 0.0062 0.0264 0.0709

MSE 0.3895 0.0184 0.0533 0.3954 1.7223
��=60 Bias -0.0089 0.0020 0.0003 0.0057 0.0200

MSE 0.1975 0.0094 0.0269 0.1985 0.8600
Table 3 . Bias and MSE Table of Weibull Distribution

Weibull log (�) b �� 80 �� 100 �� 120
��=20 Bias -0.0046 0.0011 0.0230 0.0947 0.2523

MSE 1.3079 0.0620 0.1826 1.3817 6.1515
��=40 Bias 0.0031 -0.0006 0.0132 0.0515 0.1339
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MSE 0.6395 0.0303 0.0885 0.6614 2.9033
��=60 Bias 0.0004 -0.0001 0.0063 0.0251 0.0656

MSE 0.3231 0.0153 0.0443 0.3283 1.4284
From the derived results in Table 2 and Table
3, the estimators we get are unbiased, and the
MSE decreases as the sample size increases, so
the estimators are consistent. In addition to this,

our method is valid for both distributions,
which reflects our method's robustness.

3.3 Asymptotic Normality

Figure 1. QQ-plots of Lognormal Distribution

Figure 2. QQ-Plots Of Weibull Distribution
It can be seen from the Figure 1 and Figure 2
that our estimators have good asymptotic
normality, and relevant inference can be
completed on the basis of normality.

4. Real data analysis
Table 4. Real Accelerated Lifetime Data

Voltage
80 100 120

Life (h) 1770 1090 630
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2448 1907 848
3230 2147 1121
3445 2645 1307
3538 2903 1321
5809 3357 1357
6590 4135 1984
6744 4381 2331

Mean Life (h) 4197 2821 1362
In Table 4, three experimental groups were set
up, respectively, the service life of the battery

under 80V, 100V, 120V. Each experimental
group carried out eight experiments, recording
the battery life at different voltages, and finally
calculating the average. In this way, we get the
inference below, which is shown in the Table
5. The point estimates and CIs of log (�) and
b are derived along with the point estimates of
�� 80 , �� 100 and �� 120 . In addition, the
t-test shows the validity of the model.

Table 5. Inference Outcomes of the Real Data Analysis
log (�) b �� 80 �� 100 �� 120

Estimate 20.0069 -2.6699 3.5074 6.3639 10.3544
95%CI (14.6665, 25.3474) (-3.8322, -1.5075) \ \ \
t-value 7.7690 -4.764 \ \ \

5. Conclusion
In this study, we systematically investigated
the impact of voltage on battery life through
accelerated life testing and linear regression
analysis. The results indicate a significant
inverse power relationship between voltage
and battery life, underscoring the importance
of voltage as an acceleration factor in
evaluating battery performance.
The key conclusions are as follows:
The experimental findings demonstrate that as
voltage increases, the battery life decreases
significantly, which aligns with the inverse
power law and highlights the detrimental
effect of voltage on battery longevity.
By constructing a linear regression model, we
successfully estimated the relevant parameters
and confirmed the effectiveness and reliability
of the model. The use of a semi-parametric
hypothesis ensured that the analysis was not
dependent on a specific distribution form,
thereby enhancing the generalization ability of
the findings.
This research provides a crucial theoretical
foundation for battery design and reliability
assessment, assisting manufacturers in
optimizing voltage usage strategies during
product development to extend battery life.
In summary, this study not only offers
empirical evidence for understanding the
relationship between voltage and battery life
but also points to directions for future research
in related fields. Subsequent studies could
further explore the effects of other acceleration
factors on battery life and conduct more
in-depth analyses under varying operational
conditions to achieve a comprehensive
assessment of product reliability.
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