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Abstract: With the increase quality of
products, the traditional life-testing method
is too time-consuming. Therefore, the
accelerated life-testing (ALT) is widely
used. If the product operating conditions
fluctuate continuously, the cyclic
accelerated life-testing (CALT) is
considered. Among CALTs, the
Norris-Landzberg model is commonly used
in modeling the growing crack resulting
from the thermal cyclic stress. In the
parameter estimate of this model, many
researchers have employed linear
regression models without a proper
parametric assumption, which may impair
its statistical integrity. Therefore, this
paper propose a Gamma distribution
assumption, which will ensure the
unbiasedness and consistency of estimator.
The corresponding inference is also shown.
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1.Introduction
In today's fiercely competitive global market,
products are manufactured to meet stringent
quality standards, resulting in extended
product lifespans. Traditional life-testing
methods, which rely on observing failures
under standard operating conditions, can be
impractical due to the lengthy period required
to collect meaningful data. To address this
challenge, accelerated life-testing (ALT)
techniques have become a popular approach
to expedite the data collection process.
Comprehensive discussions on ALT can be
found in the literature [1-6].
While the majority of research has
concentrated on constant stress ALT, the
cyclic accelerated life-testing (CALT) method
has been introduced for scenarios where
product operating conditions fluctuate
continuously. This approach has been

successfully applied across various industries,
including the reliability assessment of engines
[7] and electric drive systems [8]. CALT
incorporates several factors such as
temperature cycling, vibration, and humidity
fluctuations. Notably, the Coffin-Manson
model [9], which focuses on the temperature
range, is commonly used for modeling
temperature cycling. However, this model
does not account for the maximum
temperature and cycling frequency, which are
also critical parameters. To provide a more
comprehensive framework for CALT analysis,
the Norris-Landzberg model [10] has been
proposed. Extensive researches are based on
the Norris-Landzberg model, see [11-13].
In the parameter estimation process of the
Norris-Landzberg model, many researchers
have employed linear regression models
without a proper parametric assumption,
leading to estimators that may lack statistical
robustness. This could result in biased and
inconsistent estimators. To ensure the
statistical integrity of the least squares method,
we introduce a Gamma distribution
assumption in this paper. It is observed that
the shape parameter of the Gamma
distribution does not affect the inference of
the Norris-Landzberg model, hence the shape
parameter is assumed to be known.
The structure of this paper is as follows:
Section 2 outlines the methodology, including
the Norris-Landzberg model and the least
squares method with Gamma distribution
family. Section 3 details the simulation and
analysis procedures, covering simulation
settings, the accuracy of estimates, the
asymptotic normality of estimates, and the
evaluation of normal confidence intervals.
Finally, Section 4 presents the concluding
remarks.

2.Methodology
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2.1 Norris-Landzberg model
The Norris-Landzberg model, proposed by
[10], is widely used in modeling the growing
crack resulting from the thermal cyclic stress.
It assumes that the number of cycle to failure,
denoted by �, is influence by the temperature
range ∆�, the highest temperature in the cycle
���� , and the cycling frequency � . The
relationship is shown in the following formula

� = ��−�(∆�)−��(����) (1)
where � > 0 represents the constant depends
on the material,
� represents the exponent of cycling
frequency, typically near − 1

3
,

b represents the exponent of the temperature
range, which depends on the test environment,
�(����) = ���{ ��

�∗����
} represents Arrhenius

term with � = ���� , where �∗ = 8.623 ×
105�� /� is the Boltzmann’s constant and

�� is the activation energy determined by
experiment.
We also use the reduce model like
Coffin-Manson-Arrhenius model and
Coffin-Manson model in practice. The
Coffin-Manson-Arrhenius model

� = �(∆�)−��(����) (2)
exclude the cycling frequency term since
� = 0 . It can be further reduced to the
Coffin-Manson model

� = �(∆�)−� (3)
by taking �� = 0. The subsequent discussion
will focus on the realistic case with � ≤
0, � ≥ 0 and �� ≥ 0.

2.2 Least Square Method with Gamma
Distribution Family
It is assumed that the real failure time � is
visible for all test units. Then the formulation
of the Norris-Landzberg model is changed by

��� = ���

��
= ���

−(�+�)(∆��)−��(��,���), � = �, �, . . . , �, � = �, �, . . . , �� (4)
where {���|� = 1,2, . . . , �, � = 1,2, . . . , ��}
represent the � th test environment’s failure
time. The � th stress factor, denoted by �� =
[��, ∆��, ��,���] , represents the strength of
stress in the �th test environment. The stresses
in the test environments influence the
lifetimes of test units, which motive us to use

a Gamma distribution family �����(�, ��)
to formulate the lifetime distributions. Here �
is assume to be known and �� is assumed to
be relevant to the � th test environment’s
stresses. Since the shape parameter is not
influence by the environment’s stresses, the
log-linear model

��(���) = ��(�) − (� + �)��(��) − ���(∆��) + ��
�

�∗��,���
+ ���, � = �, �, . . . , �, � = �, �, . . . , �� (5)

satisfies the conditions of Gauss-Markov
Theorem. Hence, taking � = [ln(�), (� +
1), �, ��] as the parameter vector, we can
derive the loss function

�(�) = �=�
�

�=�
�� (��(���) − ��(���)� )��� (6)

where ln(���)� = ln(�) − (� + 1)ln(��) −
�ln(∆��) + ��

1
�∗��,���

is the estimated value

of ln(���) . By the least squares method, we
can minimize �(�) the by taking � = ��.

3. Simulation and Analysis
1. This section discusses the simulation and
analysis procedure, which is divided into 4
subsections:
2. The simulation settings.
3. The accuracy of estimates.
4. The asymptotic normality of estimates
5. The evaluation of normal confidence
intervals

3.1 The Simulation Settings

Table 1. Settings Used in the Simulation Study

Setting Norris–Landzberg model
i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

� 72 48 72 48 72 48 72 48
∆ � 120K 100K 100K 120K 120K 100K 100K 120K
���� 393K 373K 373K 393K 373K 393K 393K 373K
Parameter setting
�� = 0.17��, � = 104 = ���(9.2103), � =− 1

3
, � = 1.9

Setting Coffin–Manson–Arrhenius model
i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8
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� 72 48 72 48 72 48 72 48
∆ � 120K 100K 100K 120K 120K 100K 100K 120K
���� 393K 373K 373K 393K 373K 393K 393K 373K
Parameter setting
�� = 0.17��, � = 104 = ���(9.2103), � = 0, � = 1.9

Setting Coffin–Manson model
i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

� 72 48 72 48 72 48 72 48
∆ � 120K 100K 100K 120K 120K 100K 100K 120K
���� 393K 373K 373K 393K 373K 393K 393K 373K
Parameter setting
�� = 0��, � = 104 = ���(9.2103), � = 0, � = 1.9

Setting Normal Condition
� = 1, ∆� = 30�, ���� = 303�
We consider the Norris-Landzberg model
along with the degraded cases of the
Coffin-Manson-Arrhenius model and the
Coffin-Manson model. The detailed settings
are shown in the Table 1. The Gamma
distribution �����(6, ��) is utilized in the

simulation, while k=6 is the fixed shape
parameter and �� represents the scale
parameter in i th test group. For the Gamma
distribution, the scale parameters �� for � =
1,2, . . . , � are expressed as

�� = �exp( − (� + 1)ln(��) − �ln(∆��) + ��
1

�∗��,���
− �(�)) (7)

where �(�) represents the digamma function
evaluated at �.

3.2 The Accuracy of Estimates
Table 2. Bias and MSE of the estimators
�����(6, ��) Norris-Landzberg model

� � � ��

�� = 20
Bias -0.0303 -0.0034 -0.0011 0.0003
MSE 5.1401 0.0274 0.1345 0.0018

�� = 40
Bias 0.0227 -0.0038 0.0009 0.0001
MSE 2.6920 0.0132 0.0725 0.0009

�� = 80
Bias -0.0049 -0.0028 0.0027 0.0002
MSE 1.2432 0.0066 0.0342 0.0005

Gamma(6, βi) Coffin-Manson-Arrhrnius model
� � � ��

�� = 20
Bias 0.0753 / 0.0147 -0.0002
MSE 4.7756 / 0.1398 0.0018

�� = 40
Bias -0.0386 / -0.0110 0.0007
MSE 2.3592 / 0.0673 0.0009

�� = 80
Bias 0.0058 / -0.0015 -0.0004
MSE 1.1960 / 0.0346 0.0004

Gamma(6, βi) Coffin-Manson model
� � � ��

�� = 20
Bias -0.0221 / -0.0048 /
MSE 3.1532 / 0.1429 /

�� = 40
Bias -0.0607 / -0.0032 /
MSE 1.4714 / 0.0667 /

�� = 80
Bias -0.0160 / -0.0034 /
MSE 0.7774 / 0.0353 /

In this section, the mean square error (MSE)
is used to evaluate the performance of �� ,
defined as:

���(��) = ����2(��) + ���(��). (8)
The simulation was performed 10,000 times

with �� = 20,40,80 respectively and the
findings were meticulously analyzed and
detailed in Table 2. As the quantity of units
increases, both the bias and the MSE for each
model show a decline, signifying that the
estimator is both unbiased and consistent.

3.3 The asymptotic normality of estimates

If the condition of Gauss-Markov Theorem is
satisfied, the estimators derived by the least
squares method have the asymptotic normality.
When the lifetimes follow the Gamma family,
the G-M Theorem is satisfied, leading to the
asymptotic normality of estimators. It can also
be verified by the QQ-plots in the Figure 1. It
shows the QQ-plots of each estimator when
�� = 20,40,80. It can be seen that even in the
case that �� = 20 , the normality of
estimators still maintain, which is a basis of
the normal confidence interval of parameters.

3.4 The evaluation of the normal
confidence intervals

Table 3. Coverage Probabilities of the
Normal CIs

Gamma(6, βi) Norris-Landzberg model
� � � ��

�� = 20 90% 0.8945 0.9001 0.9023 0.9045
95% 0.9427 0.9456 0.9502 0.9503

�� = 40 90% 0.8926 0.8977 0.8976 0.8952
95% 0.9562 0.9512 0.9504 0.9521
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�� = 80 90% 0.8997 0.8988 0.9006 0.9005
95% 0.9501 0.9502 0.9488 0.9498

Gamma(6, βi) Coffin-Manson-Arrhrnius model
� � � ��

�� = 20 90% 0.8902 / 0.8859 0.8965
95% 0.9436 / 0.9456 0.9478

�� = 40
90% 0.9002 / 0.9005 0.8907
95% 0.9502 / 0.9468 0.9487

�� = 80 90% 0.9002 / 0.9032 0.8975
95% 0.9523 / 0.9506 0.9524

Gamma(6, βi) Coffin-Manson model
� � � ��

�� = 20 90% 0.8897 / 0.8995 /
95% 0.9559 / 0.9486 /

�� = 40 90% 0.8992 / 0.9503 /
95% 0.9500 / 0.9507 /

�� = 80 90% 0.9048 / 0.9012 /
95% 0.9527 / 0.9534 /

When the normality of estimators is satisfied,
we can use normal confidence interval to
make interval estimate by formula

[��, ��] = [��� ± �1−�
2

[(���)−1]�,�] (9)
where A represent coefficient matrix. The
simulation was performed 10,000 times with
�� = 20,40,80 respectively and we calculate
the coverage probability of the 90% and 95%
confident interval. The detailed results are
shown in the Table 3. It can be seen that the
coverage probabilities in every groups are
consistent with the nominal levels, that means,
the normal interval is effective in the
confidence interval construction.

Figure 1. QQ-Plot of Parameters

4. Conclusions
This paper propose a Gamma distribution
family assumption, and under this assumption

the least squares method gives unbiased and
consistent estimators of parameters, which is a
statistically satisfactory results. If such a
assumption is satisfied, the least squares
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method will be effective. In addition, this
paper also explain the asymptotic normality of
estimators, which ensures the effectiveness of
the normal confidence interval. In reality,
there are many other hypotheses with the
same nature, which will become our future
topic.
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