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Abstract: With the rapid development of 5G
technology, digital twins and Industry 5.0
have become hot focal points in the
manufacturing sector. A digital twin is a
technology that fully utilizes models, data,
and intelligence, integrating
multidisciplinary knowledge. It serves the
entire product lifecycle and acts as a bridge
between the physical and information
worlds, providing more real-time, efficient,
and intelligent services. This study focuses
on the implementation pathways and
construction framework of digital twin-
controlled robotic arms. Relying on an
intelligent factory assembly line
experimental device, we have built an
experimental system for digital twin robotic
arms in intelligent assembly, which includes
the physical robotic arm device and its
virtual counterpart. The study also
elaborates on the significant role of digital
twin robotic arms in advancing the
manufacturing industry. Through the
digital twin platform, we can achieve visual
management of the entire production line
operation, thereby gaining deeper insights
into the actual conditions of the production
line and quickly identifying and resolving
issues.
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1. Introduction
Digital Twin technology can be characterized
by three aspects: full lifecycle, real-time, and
bidirectional [1]. The full lifecycle aspect
emphasizes that Digital Twins can span the
entire lifecycle of a product, from design,
development, and manufacturing to service,

maintenance, and end-of-life recycling. It helps
developers design products and also enhances
users' experience with the products. Real-
time/near real-time refers to the ability to
establish a comprehensive real-time or near
real-time connection between the physical
entity and its virtual counterpart. The two are
not completely independent entities, and the
mapping relationship between them also has a
certain degree of real-time nature.
Bidirectional means that the data flow between
the physical entity and the virtual twin is two-
way. It is not limited to the physical entity
sending data to the virtual twin; the virtual
twin can also provide feedback to the physical
entity. Developers can take further actions and
interventions on the physical entity based on
the feedback from the virtual twin, ultimately
achieving control over the virtual robotic arm.
The structure of robotic arms is relatively
simple and lacks effective management
methods. Although robotic arms are widely
used, their control modes and remote
monitoring capabilities have significant
limitations. Specifically, the control mode of
robotic arms is usually quite limited, only
allowing for the execution of simple, repetitive
motions according to preset programs [2]. This
makes it difficult for them to adapt flexibly to
complex and changing environments and task
requirements, which greatly restricts their
potential for application in broader fields and
their work efficiency. At the same time,
traditional robotic arms also have obvious
shortcomings in remote monitoring and fault
diagnosis. Due to the lack of efficient remote
communication and virtual management
methods, it is difficult to achieve real-time and
accurate remote monitoring and precise fault
diagnosis, thereby affecting the maintenance
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efficiency and reliability of robotic arms.
In summary, our contributions are as follows:
To achieve precise target detection and
positioning, we introduced the Cyclic
Coordinate Descent Inverse Kinematics
(CCDIK) technology. By accurately solving
the kinematic equations of the robotic arm, this
technology can significantly optimize its
motion trajectory, ensuring precise positioning
and efficient grasping operations, thereby
greatly enhancing the working accuracy of the
robotic arm. CCDIK also possesses excellent
environmental adaptability, allowing it to
dynamically adjust control parameters based
on real-time perception of the working
environment and task requirements,
demonstrating remarkable flexibility.
In terms of data transmission and
communication, we selected the MQTT
protocol. As a lightweight, publish/subscribe-
based messaging protocol, MQTT is highly
suitable for use in low-bandwidth, unstable
network environments. By simulating the
motion trajectory and working status of the
robotic arm, the MQTT protocol provides
stable, low-latency communication services,
offering opportunities for validation and
optimization of the design.
Furthermore, we combined the advantages of a
four-axis pick-and-place robotic arm and a six-
axis ABB robotic arm to expand logistics
transportation capabilities. The four-axis pick-
and-place robotic arm has precise placing and
picking capabilities, enabling rapid and
accurate material handling and transportation.
The six-axis ABB robotic arm, on the other
hand, demonstrates exceptional flexibility and
assembly processing capabilities, allowing it to
perform more complex assembly tasks. This
combination not only promotes the application
expansion of robotic arms in fields such as
healthcare and logistics but also enhances the
accuracy and safety of logistics transportation.
By integrating these advanced technologies,
we have laid a solid foundation for the
intelligent and efficient application of robotic
arms.

2. Related Works

2.1 Virtual Simulation
Unity3D is a professional game development
engine that can be used for game development,
animation production, engineering simulation,

VR design, and more. For example, Unity3D
has been employed to develop an industrial
robot simulation and teaching experimental
system for educational purposes. Additionally,
a hybrid virtual and physical industrial robot
experimental platform has been designed using
Unity3D. Research has also been conducted on
the virtual and physical twin control simulation
of industrial robots using Unity3D.
Furthermore, a virtual teaching system for
robot disassembly and assembly has been
designed with Unity3D to facilitate learning in
this area. These examples demonstrate the
feasibility of developing a virtual simulation
training and teaching system using Unity3D.
In another application, the UI components of
the Unity3D engine have been utilized to
develop a human-computer interaction
interface. The main interface includes four
functions: communication connection, joint
control, command control, and trajectory
control. In the system monitoring experiment,
the industrial robot is activated through a set
program to observe whether the movements of
the virtual and physical robots are
synchronized. In the control experiment,
commands are generated to test the control of
joints, end-point positions, and end trajectories.

2.2 Data Interaction and Communication
In data communication, there exists a
multitude of communication protocols that
stipulate the methods of data transmission,
formats, synchronization mechanisms, error
detection, and correction. For example,
Wen Guojun et al. adopted a Socket
network communication model based on the
TCP/IP protocol. In the Unity platform, a
C# script is used as the Socket client, while
the physical robot controller serves as the
server. Once the physical and virtual
models are ready for communication, a
connection is established based on the
server's IP address and port number. After a
successful handshake, a sub-thread is
created to transmit and receive data.
Commands are sent in the format of Turing
robot network command packets to achieve
bidirectional transmission. The system also
communicates with the robot's PLC to
control the robot's status by setting IO
signal switches. The external PLC used for
the industrial robot is the Mitsubishi FX5U
series. During development, the
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HslCommunication open-source library is
employed, and its API functions are used to
efficiently read and write IO data from the
PLC.

3. Proposed Method
To ensure the standardization and orderliness
of the system development process, thereby
guaranteeing the stable operation of the system
and its future maintainability, it is necessary to
divide software development into modules
based on guidelines. Developing the system by
modules not only accelerates the development
process but also clarifies the system
requirements more effectively, thus ensuring
the stability of the system. Under the editor
module, there are mainly three major modules
[3], and below the module level are more
refined system functions, as shown in Figure 1.

Figure 1. System Function Module Diagram

3.1 Construction of Virtual Models
In this project, we first created digital models
of the existing mechanical equipment using
3ds Max software and then integrated them
into the 3D simulation space provided by the
Unity engine. Subsequently, on the Unity
platform, we designed a UI interface and
configured the model components in a parent-
child hierarchy to achieve the desired motion
constraints. By utilizing Unity's 3D editing
tools, we directly dragged and dropped the
models into the Scene view for layout.
Through scene layout settings, we precisely
positioned, rotated, and scaled these 3D
models. By assigning materials and setting up
lighting, we covered the models with material
spheres to achieve rich visual characteristics
and lighting effects [4]. The construction of the
scene is shown in Figure 2.

Figure 2. 3D Model Rendering

3.2 Dynamic Constraints of the Model
To ensure that the movement of objects in the
virtual environment is both logical and
coherent, at the software design level, we
utilize parent-child relationship chains to bind
the dynamic components of objects. This not
only ensures that individual components do not
become detached from the overall model
during movement but also organizes the
various parts of the object through the
hierarchical structure of parent-child
relationships. Specifically, we establish a
hierarchical relationship in the software based
on the operational process of the object,
placing components affected by the active
parts above the active parts in the hierarchy,
thus forming a clear subordinate relationship.
When we import such models into the Unity3D
engine, we can visually see these parent-child
relationships, and by simply calling the child
object's name, we can easily manage and
control the moving parts of the object and their
affected areas. For example, if the base is the
parent, then all parts of the mechanical arm
connected to it by a hinge must be its child
objects. If the parent moves, all its child
objects will follow and move synchronously.
Conversely, if a child object moves, the parent
does not necessarily follow and move
synchronously. Figure 3 shows the simulation
of the master-slave movement relationship
between the parts of the mechanical arm's
hinges completed through detailed parent-child
relationships.

Figure 3. Parent-Child Configuration

3.3 Component Configuration
In the Unity module, users are allowed to
design, simulate, and test the movements and
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functions of the robotic arm. Developers can
leverage Unity's physics engine and animation
system to add various components to the
robotic arm, such as joints, actuators, and
sensors, thereby achieving precise motion
control and interactive functions [5]. Unity
also provides powerful integrated editor
features that enable developers to easily
manage game projects and assets. Through the
Unity Editor, developers can create, import,
and export various game objects and resources,
while using the hierarchy and inspector panels
to organize and edit them, as shown in Figure
4.

Figure 4. Use Case Diagram of the Unity
Module

To ensure that the robotic arm model has
flexible movement capabilities in Unity, it is
necessary to design and configure multiple
joints. In Unity's Inspector panel, we need to
meticulously configure the properties of each
joint. This includes determining the connection
point of the joint, which is the specific location
between the two objects connected by the joint;
setting the rotation axis of the joint, which
determines the direction around which the
robotic arm segment can rotate; and
configuring the joint's limits and spring
properties, which will affect the range of
motion and dynamic behavior of the robotic
arm, as shown in Figure 5.
Among the added components, the Transform
component defines the position, rotation, and
scale of the game object in 3D space. The
Animator component is the core animation
controller, used to manage the animation state
machine of the game object. It allows
developers to play, blend, and transition
between different animations based on game

logic, thereby achieving rich control effects. In
addition, there are the Rigidbody component,
which controls physical behavior, and the
Camera component, which is responsible for
rendering the game view and capturing and
displaying elements in the scene. To configure
the Rotation Limit of a joint in Unity, first
ensure that the joint component is correctly
attached to the corresponding Rigidbody and
adjust the property parameters to achieve the
desired physical effects. By properly setting
these parameters, complex robotic arm control
can be realized. Specifically, for Hinge joints,
you can find the Angular Limits section in the
Inspector panel. Here, you can set the
minimum (Min) and maximum (Max) angles
of joint rotation to restrict the range of motion.
You can also adjust parameters such as Bounce
Min and Bounce Max to simulate the elastic
behavior of the joint when it reaches its
rotation limits. The joint configuration is
shown in Figure 6.

Figure 5. Joint Configuration Effect
Diagram

Figure 6. Component Configuration Effect
Diagram

4. Experiments

4.1 Controlling Robotic Arm Movement
with CCD-IK Plugin
In Unity, the combination of the CCD-IK
(Cyclic Coordinate Descent Inverse
Kinematics) plugin and Hinge Joint can
achieve complex robotic arm functions. By
calculating the movements of child bones and
deriving the positions of parent bones in the
bone chain, it determines the motion state of

Industry Science and Engineering Vol. 1 No. 11, 2024

50



the entire bone chain, enabling precise control
of the end-effector's position. This is further
enhanced by integrating path planning
techniques to control the robotic arm's
operation [6].
Firstly, in Unity, the typical approach is to
create empty GameObjects as joints and
connect them in a chain structure. For each
joint of the robotic arm, a GameObject is
created and equipped with appropriate physical
components (Hinge Joint) to simulate joint
movement. Using the CCD-IK plugin, the
bone chain of the robotic arm is set up, and a
target position is specified, allowing the end-
effector to accurately reach the designated
point.
To enable the robotic arm to move along a
specific path, path planning techniques must be
introduced. This can be based on inverse
kinematics (IK) algorithms, which calculate
the target angles each joint needs to achieve,
ensuring the robotic arm moves smoothly and
accurately along the preset path. Alternatively,
other path planning algorithms can also be
employed for the same purpose. Meanwhile,
the Hinge Joint simulates the rotational
behavior of the robotic arm's joints. By setting
its Anchor, Axis, and Motor properties, the
rotation axis, range, and power of the joint can
be defined [7]. Combining these two elements
creates a robotic arm that is both flexible and
precise. CCD-IK is responsible for overall path
planning and end-effector position control,
while the Hinge Joint ensures that each joint's
rotational movement conforms to physical
laws. By writing scripts, the target position can
be dynamically adjusted to achieve real-time
control of the robotic arm. Additionally,
collision detection and feedback mechanisms
can be incorporated to further enhance the
robotic arm's practicality and stability,
enabling it to perform well in various
application scenarios. The bone chain
configurations are shown in Figures 7 and 8.

Figure 7. Bone Chain Diagram of a Four-
Axis Robotic Arm

Figure 8. Configuration Diagram of the
Four-Axis CCDIK Plugin

4.2 Writing Circular Transport Control
Scripts
In Unity, to achieve smooth control of object
positions and rotations on a circular conveyor
belt using a robotic arm, scripts need to be
written to read data and convert it into control
commands. By iterating through the items list,
the next object's position is calculated as the
target position (targetPositions) for each object,
and the current rotation of each object is saved
as the target rotation (targetRotations). Here,
the target positions and rotations are set based
on the positions and rotations of the next
object in the list, creating a looping movement
effect.
First, the current positions and rotations of
each items object (referred to as startPositions
and startRotations) need to be recorded. Then,
using an internal loop, linear interpolation
(Vector3.Lerp and Quaternion. Slerp) is
employed to smoothly update each object's
position and rotation until they reach the target
positions and rotations. Using Vector3.Lerp
and Quaternion. Slerp for linear interpolation
ensures that the objects' positions and rotations
transition smoothly as they move from one
point to another. In the script, the start and
target positions and rotations are first defined,
and then the current positions and rotations of
the objects are calculated using interpolation
functions based on a time parameter t. Binding
the time t to an animation or button event
allows dynamic adjustment of t, thereby
controlling the movement and rotation of the
objects. To achieve continuous transport, the
objects' positions and rotations can be
immediately reset to the start points once they
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reach the target points, and the interpolation
calculation can be restarted. Additionally,
binding button controls to the robotic arm's
operation allows users to start or stop the
transport process by clicking buttons.
Through this approach, an intuitive and easily
controllable robotic arm system can be created
for smoothly transporting objects in a
counterclockwise direction on a circular
conveyor belt. The circular structure is shown
in Figure 9.

Figure 9. Circular Structure Diagram

4.3 Configuration of MQTT
Communication and Testing and
Adjustment
MQTT is a lightweight Internet of Things (IoT)
communication protocol, whose core functions
include message publishing and subscribing,
device management, data storage, and analysis.
Based on the publish/subscribe model, MQTT
enables real-time communication and data
exchange between devices, enhancing the
flexibility and scalability of the system. It also
supports comprehensive device management,
ensuring the security of data transmission and
storage, and provides remote control
capabilities for convenient device monitoring
and control. Additionally, MQTT is equipped
with a rule engine that enables customized data
processing, offering users a more convenient
data processing solution, as shown in Figure
10.

Figure 10. MQTT Module Diagram
When designing the MQTT interface, it is

essential to first consider its lightweight and
efficient characteristics, ensuring that the
interface is simple and easy to operate. A
publish/subscribe model can be adopted to
allow users to easily publish and subscribe to
messages. The interface should include a
connection settings area, where users can input
necessary information such as the MQTT
server address, port, and client ID.
Additionally, a status display area should be
provided to show real-time connection status
and message transmission and reception. To
enhance user experience, a message history
area can also be included, allowing users to
conveniently view past messages. During the
design process, attention should be paid to
color coordination and layout rationality,
ensuring that users can quickly get started and
use the MQTT interface efficiently, as shown
in Figure 11.

Figure 11. MQTT Interface Design
Diagram

When constructing the interaction bridge
between the digital twin system and the robotic
arm [8], the introduction of the MQTT
communication protocol is crucial, as it
ensures real-time and reliable data
transmission between the two. The core of this
step lies in precisely configuring the MQTT
communication link, enabling the digital twin
system to accurately send control commands to
the robotic arm. Subsequently, the control
commands sent by the digital twin system are
carefully encoded and transmitted through the
"high-speed channel" of the MQTT protocol,
arriving accurately at the robotic arm's
receiving end. Upon receiving these
commands, the robotic arm quickly parses
them and executes the corresponding actions,
such as moving, rotating, or grasping, based on
the content of the commands.
Moreover, to meet the needs of user interaction,
our scripts also need to be capable of handling
signals from various input devices, such as

Industry Science and Engineering Vol. 1 No. 11, 2024

52



keyboards, mice, or game controllers. By
listening to and parsing these input signals, we
can achieve real-time control of the robotic
arm by users, further enhancing its practicality
and interactivity. The robotic arm also
continuously sends its execution status, such as
position, speed, load, and other key
information, back to the digital twin system
through the MQTT protocol.
This feedback mechanism provides the digital
twin system with valuable real-time data,
enabling it to accurately monitor the robotic
arm's operating status and performance. The
flowchart is shown in Figure 12.
Based on these real-time data, the digital twin
system is able to continuously monitor and
optimize the robotic arm. Once a decline in
performance or potential malfunction of the
robotic arm is detected, the system can quickly
respond by adjusting the control strategy or
issuing an alert, thereby ensuring the robotic
arm operates continuously, stably, and
efficiently [9].

Figure 12. MQTT Signal Transmission
Flowchart

4.4 Experimental Data
By receiving real-time signals from the client,

the continuous motion of the robotic arm's
joints can be initiated, allowing it to pick up
the target object from the circular conveyor
belt using a pneumatic suction cup and place it
smoothly onto the adjacent orange placement
platform. The process of achieving the four-
axis suction effect in Unity is shown in Figure
13.
By receiving real-time signals from the client,
pressing the button can initiate the continuous
motion of the robotic arm's joints [10],
enabling it to consecutively grasp two target
objects from the placement platform using its
gripper, combine them, and then place them
smoothly onto the circular conveyor belt. The
process of implementing the six-axis ABB
robotic arm's grasping effect in Unity is shown
in Figure 14.

Figure 13. Four-Axis Robotic Arm Suction
Process Diagram

Figure 14. Six-Axis ABB Robotic Arm
Grasping Process Diagram

At the initial stage of system design, we
predefined corresponding transmission signals
for each functional button. When these buttons
are pressed, they send specific signals through
the MQTT protocol. In the Unity development
environment, these MQTT signals are received
in real-time and displayed in the console. We
have designed corresponding processing
functions for each received signal to
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implement the functions triggered by the
buttons. For example, one signal may control
the movement of the circular conveyor belt,
while another signal may instruct the robotic
arm's suction cup to pick up the target object
[11]. Through this design, each operation of
the functional buttons receives precise and
logically clear responses. The signal
transmission information is shown in Figures
15 and 16.

Figure 15. Data Transmission Process

Figure 16. MQTT Subscription Test
Diagram

5. Conclusion
Cross-platform communication plays a crucial
role in the context of signal transmission and
subscription, ensuring the effective flow and
interaction of information across different
operating systems, various devices, and diverse
network environments. In this process, the
signal sender encodes the signal into a
universal format using a specific encoding
method and transmits it via the corresponding
communication protocol. Correspondingly, the
signal receiver must be capable of decoding
the signal in this format and then executing the
appropriate operation or response based on the
specific content of the signal. This mechanism
makes cross-platform communication
indispensable in signal transmission and
subscription.
Through the MQTT protocol, users can
remotely control a six-axis ABB robotic arm to

perform precise grasping and assemble models
using buttons. Once the model assembly is
complete, the circular conveyor belt is
activated to transport the items smoothly and
efficiently to a designated area for manual
labeling and inspection. Here, the items
undergo quality inspection and label printing
by human operators. After inspection, qualified
products are precisely grasped by a four-axis
suction robotic arm and placed on a designated
placement platform, completing the entire
process.
In the future, digital twin systems will focus
more on optimizing algorithms and enhancing
the level of intelligence to more efficiently
handle large-scale, high-complexity data and
improve the real-time performance and
accuracy of models. At the same time, with the
rapid development of technologies such as the
Internet of Things (IoT), cloud computing, and
big data, digital twin systems will achieve
broader data interconnection and sharing,
providing more comprehensive information
support for intelligent manufacturing.
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