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Abstract: To explore optimized high-
performance computing energy consumption
and environmental impact, we applied
different mathematical models to solve green
computing problems in distinct scenarios.
First of all, we quantified global HPC energy
consumption at full load by analyzing total
energy consumption and power consumption
across years and countries. Next, we
developed a comprehensive model to estimate
annual global HPC system carbon emissions
based on HPC power consumption, energy
mix data, and emission factors for various
energy sources. Then to estimate future HPC
carbon emissions, we fitted an effective
Elastic Net Regression Model combining L1
and L2 regularization based on energy mix
proportions, HPC energy use, and carbon
emissions data from 2014–2023. The results
show a peak in annual emissions in 2017
(1.456 → 1010 kg CO2), followed by a decline
to 6.99 → 109 kg in 2023, indicating a shift
towards renewable energy sources. In
addition, using the Game Theoretical Model,
we analyze competition and cooperation
among HPC data centers in water resource
allocation. Finally, we objectively analyzed
the strengths and weaknesses of the above-
mentioned model. We also drafted a non-
technical report for the United Nations
Advisory Board letter, using the results of our
assessment and taking environmental effects
into consideration.

Keywords: HPC; Elastic Network Regression;
Environmental Protection; Dynamic System
Modeling; Game Theory Model

1. Introduction
High performance computing (HPC, Figure 1) is
a class of workloads that delivers much higher

horsepower than traditional computers and
servers. It’s powerful enough to solve complex
problems and has been applied to various fields
including data management, deep learning, and
quantum computing. Therefore, nowadays HPC
is becoming increasingly popular, with nearly
every Fortune 1000 company now using it [1].
According to Hyperion Research, the global
HPC market is expected to reach $44 billion in
2022.
In practical applications, there are some loads
(such as DNA sequencing) that are too large for
any single computer. In most cases, HPC or
supercomputing environments can enable
multiple nodes to work together in a cluster to
perform massive calculations in a short period of
time and tackle the challenging loads of
extremely complex nature. However, HPC
systems typically need to operate continuously
for extended periods and generate substantial
heat during operation. To maintain system
stability, cooling systems are essential and
consume significant amounts of energy.
Additionally, HPC systems often use high-power
processors and GPUs, which demand large
amounts of electrical power when in operation [2].

Figure 1. HPC Centre
In this paper, we aim to develop a
comprehensive model to assess the
environmental impact of high- powered
computing, with the goal of raising awareness
and promoting efforts to reduce its negative
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effects. To clearly show our work, we create a
flowchart as shown in Figure 2.
Problem 1: For this problem, we need to conduct
extensive literature review and to understand the
energy consumption and the corresponding
carbon footprint associated with HPC. Then we
build a comprehensive model to evaluate it.
Problem 2: By comparing current energy use
with environmental indicators under the model,
we set a framework to assess the expected global
carbon emissions and the feasibility of making a
reduction in carbon emissions.
Problem 3: After that, we will use our model to
predict the energy consumption and
environmental impacts of replacing the current
energy sources in HPC with renewable energy,
assessing the expected carbon emission
reductions elaborate on energy consumption.
Also, we will assess the feasibility of such an
operation.

Figure 2. Flow Chart of Our Work
Problem 4: Lastly, we are required to elaborate
on and apply our models to specific HPC
facilities, analyzing whether the new energy
policies will be adopted and if the shift is
worthwhile. Based on this analysis, we will
compose a report to the stakeholders of the
selected facility advocating for a shift to
renewable energy.

2. Mathematical Model Construction

2.1 Model Description
2.1.1 Symbols and Notations
The variables used in our modeling process are
summarized in Table 1, which provides precise

definitions for each parameter.
Table 1. Variable Definitions

Variable Description

E total
Total carbon emissions (kg CO2)
resulting from energy consumption of
HPC facilities.

pi
Proportion of energy type i used in
HPC for the given year (e.g., 50%
represented as pi = 0.50).

ci

Carbon emission factor (kg CO2 per
kWh) for energy type. This represents
the amount of CO2 emitted per unit of
energy consumed for each energy
source.

H Total energy consumption (kWh) of
the HPC facilities for the given year.

FT
1 - RT, where RT is the proportion of
renewable energy used in the total
energy mix for year T.

ef Carbon emission factor for fossil
energy sources (kg CO2 per kWh).

er Carbon emission factor for renewable
energy sources (kg CO2 per kWh).

xi
Feature vector for the i-th observation
(energy consumption and energy mix
proportions).

yi Observed carbon emissions for the i-th
year.

λ1 , λ2 Regularization parameters.
IC,y Income value for country C in year y.

IncomeC,y Operating income for country C in year
y.

EfficiencyC,y Water-saving efficiency for country C
in year y.

Et+Δt Predicted energy consumption at time t
+Δt.

Et Energy consumption at time t.

Δg
Growth rate fluctuation, which can
vary within a specified range (e.g.,
between -5% and 5%).

2.1.2 Data Description
We derived the dataset from a diverse range of
sources. This approach ensured that the dataset
was both comprehensive and representative. The
data sources with full links are shown in Table 2
(Figure 3):

Table 2. Data Sources with Full Links
Category Link

Energy Source
Proportion Data

https://www.energyinst.org/st
atistical-review

HPC Energy https://www.top500.org/lists/
green500

Emission Factors https://www.iea.org/data-and-statistics

International Conference on Humanities, Social 
and Management Sciences (HSMS 2025)

52 Academic Conferences Series (ISSN: 3008-0908)



Figure 3. Energy Source Proportion of 2023
2.1.3 Assumptions and Justifications
•Assumption 1: All carbon emissions and
environmental impacts are caused by high-
performance computing (HPC).
•Justification 1: This assumption is made to
focus solely on the environmental consequences
that arise directly from HPC operations,
excluding any other potential external factors
that might contribute to carbon emissions or
environmental degradation. By isolating HPC as
the main source of environmental impact, we
can more accurately analyze its role in carbon
emissions and energy consumption.
•Assumption 2:We only consider the cost caused
by high-performance computing in this case.
•Justification 2: This assumption is made to
simplify the analysis and provide a clearer under
- standing of the specific environmental and
economic costs associated with HPC. By
excluding other costs (such as those from other
industries or sectors), we can narrow our focus
and develop more precise models for the impacts
of HPC on carbon emissions and resource
consumption.
•Assumption 3: All data collected is accurate.
•Justification 3: The data used in this study is
sourced from reputable and professional
websites that provide reliable, peer-reviewed,
and up-to-date statistics. While no data
collection process is completely free from error,
we assume the accuracy of these sources based
on their credibility and the rigorous standards of
the organizations behind them.
•Assumption 4: There is no other welfare loss
occurring before and after refining the model,
considering the new factors that influence the
environmental impacts caused by HPC.
•Justification 4: In this case, we focus on the
direct consequences of refining the HPC model
with respect to environmental impacts. We do
not account for potential social or economic
welfare losses that might result from other
unforeseen factors. By narrowing our scope to
the impacts that are directly caused by the model
refinement and the introduction of new variables,
we maintain the simplicity and clarity of our

analysis, while assuming no significant
unintended consequences.
•Assumption 5: Ideal time consumption and
steady-state conditions are assumed for all
processes.
•Justification 5: The model assumes that the
system operates in a steady-state, with constant
performance over time. This removes the need to
account for fluctuations in load or transient
behaviors, which simplifies calculations. In
reality, time consumption and system states may
vary, but this assumption ensures a simplified
and tractable model for understanding long-term
trends in energy consumption and emissions.

2.2 Analysis of Global HPC Energy
Consumption
2.2.1 Data Description
To conduct this study, we collected HPC energy
consumption data for multiple years and
different countries. The core variables of the
data include Rmax (Maximum computing
performance in GFLOPS), power (power
demand in kW), year(year), and
country(country). These data are retrieved from
various CSV files and, after cleaning and
integration, provide extensive geographic and
temporal coverage for analysis. In each data file,
Rmax is used to describe the theoretical
computing power of an HPC system, and Power
reflects the power requirements required to
achieve this capability. The Year and Country
fields provide time and space distribution
information and allow data to be grouped at the
annual and country levels. Through the detailed
mining and integration of these data, we were
able to draw a panoramic view of the world’s
HPC energy consumption and laid the data
foundation for subsequent task analysis.
2.2.2 Energy Consumption Framework
In the process of quantifying the energy
consumption of HPC, we mainly focus on 2 key
indicators. The first one refers to the theoretical
maximum amount of energy which an HPC
system needs in order to operate at full load
during the entire year. This indicator can not
only reflect the theoretical limit energy
consumption of one HPC system, but also
provide a criterion for measuring its peak
operating efficiency. The second is the average
utilization rate of energy consumption. The
indicator reflects the energy demand under
average conditions based on the actual operation
of the HPC system and fluctuations in utilization.
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By combining these two indicators, it is possible
to comprehensively clarify the difference
between the theoretical maximum working-
situation value of HPC system and the actual
operation.
The study first comprehensively prepare sand
processes the original data. At this stage, make
sure that all data files contain the required fields,
and at the same time clean up and repair possible
and invalid values. For non-numeric fields, such
as numeric data stored in text format, type
conversions were performed to ensure the
accuracy of the calculation process. After the
clean-up of the data was completed, we entered
the energy calculation phase. In the calculation
of full-load energy consumption, we estimate the
theoretical maximum energy demand under full-
load operating conditions throughout the year
using the formula:

E total = Power × Time (1)
To calculate the energy consumption at the
average utilization rate, the normalized ratio of
Rmax was introduced and adjusted to bring the
data closer to the actual operating environment
based on the actual utilization rate. After
obtaining the energy consumption values for
each system, the data were grouped according to
the year and country to calculate the total full
load energy consumption and total average
energy consumption for each year. This process
will help you to fully understand the
characteristics of HPC energy consumption from
2 dimensions: time and geography. Finally, the
processed and calculated data is saved as a CSV
file for further analysis and display.
2.2.3 Results
By carrying out the above methods, the study
made a series of valuable discoveries. First,
under full load operating conditions, the total
annual energy consumption of HPC systems
reaches 9,438,010.26 kWh. The results show
that when all HPC facilities operate at
uninterrupted peak levels throughout the year,
their energy demand is very high. However, in
actual operation, the average energy
consumption is reduced due to load fluctuations
and differences in system utilization. The
calculated results show that the energy
consumption adjusted based on the Rmax ratio is
close to the actual situation.
In addition, analysis at the national level found
that countries where HPC is deployed
intensively, such as Western countries where
science and technology are advanced, account

for a fairly high percentage of global total
energy consumption. Due to the need for
technological development, these countries are
highly dependent on HPC facilities, which has
led to a concentration of energy demand. In
developing countries, the impact of carbon
emissions cannot be ignored because of the high
proportion of fossil fuels in the energy structure,
although the introduction of HPC facilities is
relatively small.

Figure 4. Global HPC Average Energy
Comsumption and Prediction

Judging by the annual trend as shown in Figure 4,
the growth rate of HPC energy demand is very
related to the popularity of its technology
applications. In particular, the energy
consumption of HPC systems is increasing year
by year amid a surge in demand in the fields of
artificial intelligence and big data. This trend is
consistent with the overall trend of global
scientific and technological development.
2.2.4 Discussion
Research results show that the energy
consumption of HPC systems has a multi-
dimensional impact on the environment. On the
one hand, the energy consumption under full
load conditions provides a reference value for
HPC equipment under extreme operating
conditions, on the other hand, the analysis of the
average operating rate reveals the energy
efficiency performance in actual operation. As a
result of comparing the two, it was found that
there is much room for optimization in the
operation of HPC system. To further reduce the
energy footprint of the HPC system, they can
take the following measures: The 1st is the
introduction of dynamic load management
technology. By dynamically adjusting the
operating load of HPC according to actual needs,
unnecessary energy waste can be effectively
reduced. The second is the adoption of efficient
heat dissipation technologies such as liquid
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cooling or other innovative heat dissipation
solutions that help reduce energy loss in the heat
dissipation process. In addition, gradually
increasing the proportion of renewable energy
used will significantly reduce the carbon
emissions of HPC systems, especially in the
context of the transformation of the energy
structure.

2.3 Environmental Impact of HPC Energy
Consumption
2.3.1 Current Situation
As the needs for high performance computing in
artificial intelligence, data science, and
cryptocurrency mining increases globally, the
energy required to accomplish those massive
computations experiences rapid growth
accordingly [3]. This has had a huge impact on
the relationship between energy assumption and
the nature by far, especially demonstrated by
carbon emission [4]. Yet, during the expansion of
data centers around the world, carbon footprints
due to HPC should no longer be considered
negligible, typically when a large proportion of
the energy source used in generating electricity
for HPC to consume is fossil energy.
2.3.2 Data Preparation
Energy Source Proportion Data:We used data
on the world’s energy mix, including the
proportion of different energy sources such as
coal, electricity, natural gas, and renewables, as
shown in Figure 5. These data help us to
determine the proportion of different energy
sources used to generate electricity each year.
HPC Energy: Since there is no direct data on
how much power is consumed by high
performance computing systems globally, we
extract the data of top 500 HPC systems and use
them to estimate the complete view, assuming
that the top 500 systems account for 60 percent
of energy consumption of all HPC systems in the
world.
Emission Factors: Electricity came from
different energy source will have a different
extent of environmental impact when dealing
with carbon emission problem, so it is necessary
to clarify how much kg of carbon dioxide will be
released as 1 kWh of electricity came from
different sources is used.
2.3.3 Pursuing Step by Step
First, we filter the data to extract years and
metrics common to all three datasets to ensure
consistency. In total, we input data from 10
years (2014-2023) and 9 energy sources

(bioenergy, solar, wind, hydropower, nuclear, oil,
gas, coal and other renewable energy) for
calculation. Second, we calculate the total
carbon emissions of HPC year by year based on
the annual HPC energy consumption and the
proportion of each energy use, combined with
the carbon emission factors of each energy. The
core formula we use is:

)2(
1

total  


n

i
ii HCPE

As comes to the results, we get carbon emissions
that show slight fluctuations between 2014 and
2023, as shown in Table 3.

Figure 5. Changes of Proportion of Energy
Source From 2014-2023

Table 3. Annual Total CO2 Emission(kg)
Year Total CO2 Emission(kg)
2014 4.98 × 109
2015 4.69 × 109
2016 5.09 × 109
2017 1.46 × 1010
2018 9.32 × 109
2019 8.04 × 109
2020 7.39 × 109
2021 7.38 × 109
2022 7.07 × 109
2023 6.99 × 109

2.3.4 Analysis of the Results
The Figure 6 shows the annual CO2 emissions of
HPC for 2014-2023 (in kg). From the data, we
see that emissions reached the highest point in
2017 (1.456 × 1010 kg CO2) and then slowly
declined.
This could mean that, while the energy
consumption of HPC facilities continues to grow,
energy source structure or more efficient
computing hardware may offset the resulting
carbon footprint. For instance, doubling the
amount of renewable energy could have had
some positive effects on carbon emissions.
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Figure 6. Global HPC Carbon Emissions
Over the Years

2.4 Projecting Future CO2 Emission
2.4.1 Context of the Problem
As global demand for high-performance
computing increases, HPC energy use and
carbon emissions are becoming increasingly
serious threats to sustainable development. As
HPC systems consume large amounts of energy,
particularly electricity, this directly contributes
to increasing carbon emissions and contributes
to global climate change. Energy composition
and energy use both play complicated roles in
determining carbon emissions [1]. Thus, our goal
in this problem is to build a predictive model
that accurately predicts HPC global carbon
emissions in 2024- 2030 using historical energy
mix values, annual HPC energy use and carbon
emissions, and to find out how different energy
elements impact carbon emissions. With the help
of this model, we could give decision makers a
data basis to design effective emission reduction
policies and encourage the use of green energy
[5].
2.4.2 Model Selection and Comparative Analysis
Here are the reasons for choosing the most
appropriate model: Elastic Network Regression.
Multi-factor Modeling Capability: The
advantage of elastic network regression is that it
brings together both L1 (lasso regression) and
L2 regularization (ridge regression) for the
purpose of both variable screening and
multicollinearity handling. There could be a
correlation between energy structure and energy
use, and so elastic network regression would be
a good choice.
Robustness: Compared with the time series
model, elastic network regression only cares
about how dependent variables (energy share,
energy usage) relate to independent variables
(carbon emissions), not how time dimensions are
autocorrelated. For short-term historical data

between 2014-2023, elastic network regression
is an optimal solution for mitigating insufficient
data effects.
Explanatory: The elastic network regression
coefficient can be used to quantify the individual
impact of each energy on carbon emissions,
useful for future policy decision making and
target optimization.
Limitations of Time Series Models: The time
series models like ARIMA or LSTM emphasize
the time dependence of the data and can exclude
key influences like energy ratio, energy use.
Additionally, time series models are extremely
dependent on long-term data and are difficult to
interpret for underlying reasons. This model,
hence, is not suitable for modeling the impact of
changes in energy share in this study.
Initially we extract energy mix proportions, HPC
energy consumption per year, and carbon
emissions from the three data sets containing
data from 2014 to 2023, convert energy
proportions to percentages, and merge all
variables to construct the matrix X and target
variable y.
The second step is to adjust the model parameter
α = 0.5 so as to control the effects of L1 and L2
regularization. Next, build the elastic net model
based on the historical data and extract the
regression coefficients B and intercept.

(3)
After that, we assume a 5% compound annual
increase in HPC energy usage. Calculate the
energy mix percentages for 2024-2030 using
interpolation, and estimate the carbon emissions
for the next seven years using assumed energy
consumption and energy mix ratios.
Finally, we plot the historical and future carbon
emissions relative to each other to visualize the
trends.
2.4.3 Results Analysis
The Figure 7 displays the global high-
performance computing (HPC) carbon emissions
forecasts between 2024 and 2030. Carbon
emissions are forecast to rise from around 707
million kg in 2024 to about 832 million kg in
2030, an increase of 17.4%. Such an effect
means that, as HPC energy use rises, so does its
carbon footprint.
Besides the prediction results, we get the Elastic
Net regression model coefficients (as shown
below).
The coefficients of the Elastic Net regression
model are listed in Table 4, providing insights
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into how different energy sources impact carbon
emissions.
From them, the regression coefficient for HPC
energy use is 1.3703, so the more HPC energy
usage, the more carbon dioxide will be released.
Additionally, other renewable energy sources
(wind and solar) have a negative carbon
emission coefficient, which means that they
reduce carbon emissions. Fossil fuels such as oil,
coal and natural gas increase carbon pollution, as
their positive coefficient indicates, and the
coefficients of those energy sources quantify
their carbon emissions.

Figure 7. Elastic Net Regression Model
Projection

2.4.4 Follow Up
How much energy HPC systems will use and
how many tons of carbon they’ll generate over
the next few decades is important for
policymakers and scientists when they design
sustainable development plans. In this problem,
we used scenario analysis to predict HPC energy
and carbon consumption over time based on past
performance under different growth rates and
use scenarios.
We looked specifically at annual growth rates of
4% - 6% and under two use cases: 70%
utilization (assuming resources were not being
used) and 100% utilization (maximum
efficiency). Through two-scenario approach, we
could simulate conceivable variations in capacity
and their effects on carbon emissions in the
future.
2.4.5 Proposed Solution Steps
To address this problem, we first defined a range
of growth rates (4%-6%) to calculate HPC
energy consumption for the next 7 years. We
estimated two use cases for each growth rate:
Scenario 1: 70% utilization, which refers to a
lower level of efficiency.
Scenario 2: Full usage, which is the optimal
situation.
Here are the principal steps in our model:

Projections for Growth Rates: Project HPC
energy usage by year based on pre-set growth
rates and utilization levels.
Energy Mix Trends: Linear interpolation for
energy mix ratios in 7 years.
Carbon Emissions Estimation: Integration of
regression coefficients, energy consumption, and
energy proportions for future emissions, in
which we used this key formula:

Et+Δt = Et × (1 + Δg) (4)
Cases Analysis: We combine the two growth
rates (4% and 6%) with the two operating
scenarios (70% and 100%) into 4 cases in total,
which can help us to determine the upper bound
and the lower bound of CO2 emission in next 7
years, especially 2030. We plotted results into 4
separate graphs (Figure 8, Figure 9, Figure 10,
Figure 11) to visualize the range of predictions.
Our key findings include:
(1) At a 4% growth rate: Energy consumption
and carbon emissions are increasing in both
utilization scenarios, and 70% utilization is
significantly lower emission. The case with a
growth rate of 4% and a utilization rate of 70%
refers to the lower bound of the prediction, as
shown in Figure 8.
Table 4. Elastic Net Regression Coefficient

Feature Coefficient
Intercept -2.245 ×109

HPC Consumption (kWh) 1.3703
Other Renewables -5.3435 ×1011

Bioenergy -1.6924 ×1011
Solar -6.9712 ×107
Wind 2.3324 ×108

Hydropower - 1.8957 ×1010
Nuclear -3.6537 ×1010
Oil 1.563 ×1010
Gas 3.0112 ×1010
Coal 5.5049 ×109

Figure 8. Growth 4%, Utilization 70%
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Figure 9. Growth 6%, Utilization 70%

Figure 10. Growth 4%, Utilization 100%

Figure 11. Growth 6%, Utilization 100%
(2) With a 6% growth rate: Carbon emissions
rise rapidly in both utilization scenarios (most
prominently, in the 100% utilization case) which
shows how serious the impact can be on the
environment. The case with a growth rate of 4%
and a utilization rate of 70% refers to the lower
bound of the prediction. The case with a growth
rate of 6% and a utilization rate of 100% refers
to the upper bound of the prediction, as shown in

Figure 11.

2.5 Dynamic Modeling for Renewable Energy
Transition
The background of energy transformation is not
only one of the important global strategies to
combat climate change, but also the key to
achieving sustainable development. The current
energy system is still fossil fuels, and the carbon
emissions it brings are one of the main drivers of
global warming [1]. Before 1, How to promote
the rapid development of renewable energy
through energy and technology. In the context of
this article, the as a dynamic system model is a
tool that can simulate changes in complex
systems, and it provides important theoretical
support for the equivalent analysis of processes
and energy conversion [6].
2.5.1 Modeling and Methodology
Dynamic system models capture the
evolutionary characteristics of energy systems
under various situations with dynamic changes
in energy consumption, carbon emissions, and,
in essence, energy structures [7]. The input of
the model includes initial energy data (such as
total energy consumption, percentage of
renewable energy), energy growth rate, and
emission factors; the output includes the time
evolution of the energy structure, trends in total
energy consumption, and changes in carbon
emissions [8]. The model first uses the formula:

pt+1 = pt × (1 + g) (5)
To determine the annual growth rate of total
energy, which reflects the change in trend
energy demand. Based on this, the model also
guarantees the system’s ability to adopt
renewable energy, the ratio of renewable energy
in the form of:

rt+1 = min(RT + ΔR, 1) (6)
Finally, the carbon emissions are recalculated by
the formula:

Pt = PT×(FT · ef + RT · er ) (7)
The above formula describes the dynamic
evolution of the energy system in terms of time
and structure.
2.5.2 Scenario Analysis and Simulation Results
Scenario analysis involves simulating the
transition of energy systems to renewable energy
sources. The results have been shown in the
Figures12-15. The proportion of renewable
energy is assumed to increase by 5% annually,
reaching approximately 65% of total energy by
2030. During this period, carbon emissions
gradually decline, with total emissions reduced
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by 40%. However, dependence on fossil fuels
constrains further system optimization. This
scenario reflects the potential of a gradual
transformation path while highlighting its
environmental benefits.

Figure 12. Dynamic Prediction of Carbon
Emissions

Figure 13. Dynamic Prediction of Energy
Proportions

Figure 14. Renewable Proportion: Base vs
Immediate 100%

Figure 15. Carbon Emissions: Base vs. Im-
mediate 100% Renewable

The emergency transformation scenario shows
more radical change in the energy structures by
simulating the possibility of 100% renewable
energy supply in 2024. In this case, fossil fuel-
related carbon emissions will be reduced to zero
emissions from 2025. However, the operability
of this scenario is limited by factors such as
technology maturity, infrastructure expansion,

and economic costs. From a long-term
perspective, the immediate transformation
scenario shows strong prospects in terms of
environmental benefits and energy security. The
sensitivity analysis of the model reveals that the
growth rate of energy and the proportional
growth rate of renewable energy have a
significant impact on the behavior of the system.
When the energy growth rate increases, the total
energy consumption and carbon emissions of the
system will increase. Conversely, when the
annual growth rate of renewable energy is 17%,
carbon emissions can be effectively controlled
even under the high growth rate scenario. The
result of sensitivity analyses is that promotes
indirect increased energy growth and the
development of renewable energy to reduce
environmental costs.
2.5.3 Conclusion and Discussion
Through benchmarking and comparison of
urgent transformation scenarios, the dynamic
system model provides a clear quantitative
picture of the energy conversion path and its
consequences. Although the slow transformation
is relatively stable, its environmental benefits are
severely limited, indicating that the rapid
transformation has great potential in terms of
emission reduction, and the economic and
technical requirements are higher. A
comprehensive evaluation of the level of
regional economic development, technical
observation and social acceptance. Further
research can improve the predictive power of the
model, such as energy costs, technology
maturity and social impact.

2.6 Game Theoretical Model for Operating
Revenue and Water Efficiency
2.6.1 Methodology
Our study focuses on water-saving efficiency
since Enhancing efficiency reduces energy
demand for water treatment and distribution,
cutting costs and emissions. Meanwhile its
measurable impact on resource optimization and
its ability to reveal the synergy between
government policies and operator revenues.
In order to analyze the game-theoretical[9]
relationship between operators and the
government, the following methods are used in
this study: First, the data is preprocessed, and a
unified data set is constructed by combining
operator revenue and government water-saving
efficiency data [10]. Secondly, define the income
function, which takes income and water-saving
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efficiency as variables and describes the synergy
between the two. The formulae is given below:

Ic,y = Incomec,y × Efficiencyc,y (8)
The purpose of the income function is to
highlight the gain effect of efficiency
improvement on comprehensive income. Then,
the income values of all countries and years are
calculated based on the income function, and
they are filled in a two-dimensional matrix to
form a revenue matrix. The rows of the matrix
represent the country, the columns represent the
year, and the matrix elements are the income
values of the corresponding country and year.
Finally, heat map is used to analyze the
distribution characteristics and dynamic changes
of the income matrix, and to identify the income
performance of various countries in different
periods.
2.6.2 Data Processing and Revenue Calculation
First, the operator’s revenue data and
government water-saving efficiency data are
merged to generate a joint data set with the year
and country as the key fields. Based on the
combined data, the income function is defined as
the product of income and water- saving
efficiency, reflecting the synergy between them.
High income with low efficiency suppresses the
comprehensive income value, while both being
high maximizes it, capturing dynamic
cooperative benefits. A revenue matrix [11] is
then constructed by calculating and filling
comprehensive income values for all countries
and years into a two-dimensional matrix, with
rows representing countries, columns
representing years, and elements being the
income values. Missing data is set to zero due to
the lack of information for calculation.
The revenue matrix is displayed through the heat
map, and the depth of the color represents the
level of revenue value. This visualization
method visually presents the income distribution
and changing trends of various countries in
different periods, and provides an important
basis for the discussion of follow-up results.
2.6.3 Result and Discussion
Through calculation and analysis, significant
differences in income values in different
countries can be observed. Some countries have
an advantage in operating income and water-
saving efficiency, and their revenue value is
generally higher. Although other countries have
lower incomes, their high water-saving
efficiency makes up for their disadvantages to a
certain extent and shows strong competitiveness.

In the time dimension, the income value of many
countries has shown a steady growth trend,
which may be related to policy adjustments or
technological progress. At the same time, there
are also some countries where income value
fluctuates greatly in certain years, which may be
affected by economic or environmental factors.
As shown in Figure 16, the peaks in the revenue
value in the revenue matrix are mainly
concentrated in countries and years with high
operating income and water-saving efficiency.
This shows that based on optimizing resource
allocation and improving efficiency, operators
and governments can achieve win-win
cooperation. On the contrary, for countries with
low water-saving efficiency [12], even if their
incomes are higher, their income value is still
significantly restricted, which reflects the
importance of efficiency improvement to
optimize overall benefits.

Figure 16. Payoff Matrix Heat map

3. Suggestion and Model Evaluation

3.1 Suggestion
Taking these findings together, we can suggest
the following recommendations:
• First, technological progress and energy
efficiency should be reinforced, especially in
medium and high growth rates, to reduce the
increase in carbon emissions;
• Second, we should diversify more towards low
-carbon energy sources and reduce the reliance
on high-carbon sources;
• Lastly, the government can take appropriate
measures to promote the creation and use of
energy- efficient technologies, especially in the
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high-growth environment, to successfully
manage carbon emissions.
• Optimize Utilization: Organizations should aim
to optimize utilization without burdening re-
sources, achieving a balance between utilization
and over utilization.

3.2 Strengths
• Our model adopts an uncommon dynamic
system model, which is practicable but unique
way.
• Our method involves considering different
kinds of energy resources, not only consider
energy use, in order to separate different factors
of energy use.
• We introduced different scenarios to predict the
HPC carbon emission till 2030, which means if
there are change in policy, the prediction can be
well showed.

3.3 Weaknesses
• Since the model is newly developed, it still
needs more testing in order to get the model’s
best performance.
• The data is not comprehensive. It only has data
with a time span of ten years, which still have
error.
• Because of the short time span, it cannot show
a long-term trend of carbon emission.

4. Conclusion
This study systematically evaluated the energy
consumption and environmental impact of high-
performance computing (HPC) and proposed a
multi model prediction framework. The core
conclusion is as follows:
Based on the analysis of global HPC system full
load energy consumption, it is found that major
suppliers contribute significantly, and there are
regional differences in energy consumption. By
integrating energy consumption, energy structure,
and emission factors, the global HPC carbon
emissions from 2014 to 2023 are estimated,
reflecting energy efficiency improvements and
the transition to renewable energy. Based on the
elastic network regression model (combined
with L1/L2 regularization and multicollinearity
correction), it is predicted that carbon emissions
will increase by 17.4% in 2030 compared to
2023 (assuming HPC energy consumption will
increase by 5% annually) to verify the potential
for renewable energy emission reduction. The
dynamic system model quantifies the long-term
emission reduction effects of renewable energy,

while the game theory model reveals the
competition and cooperation mechanisms of
water resources in data centers.
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