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Abstract: This study addresses the
limitations of current crop pest and disease
diagnosis accuracy due to reliance on single-
modal data and insufficient intelligence in
green control decision-making. We propose a
multimodal deep learning fusion framework
to enhance diagnostic precision and the
scientific validity of control decisions. The
research integrates multisource modal data,
including images, spectra, and text, and
develops a multimodal feature extraction
module through improved convolutional
neural networks (CNNs), Transformers, and
graph neural networks (GNNs). Three fusion
strategies—early, late, and hybrid—are
designed to achieve deep cross-modal feature
integration, optimized by an attention
mechanism for intermodal information
exchange. An intelligent diagnosis system
based on the fusion model is developed,
incorporating an expert knowledge graph for
green control  decision-making. The
experimental results from multiple regional

datasets demonstrate that the proposed
multimodal fusion model improves
diagnostic accuracy by 12.3%-15.8%
compared to  single-modal methods,

significantly enhancing the timeliness and
adaptability of control decisions. The
constructed intelligent system exhibits robust
performance across different crop varieties
and environmental conditions, providing an
efficient and reliable technical pathway for

precise diagnosis and green control in
agriculture, with significant practical
implications for smart agriculture
development.

Keywords: Multimodal Deep Learning; Crop
Pest and Disease Diagnosis; Feature Fusion;
Green Control Decision-Making; Intelligent
System
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1. Introduction

1.1 Background and Significance

With global climate change and agricultural
modernization, pest control faces significant
challenges. According to the FAO, annual
global crop yield losses due to pests can reach
15%-20%, notably affecting major crops like
rice, wheat, and corn. Traditional diagnosis
relies heavily on the subjective experience of
agricultural technicians, which is often
insufficient for timely responses to widespread
pest outbreaks. Although IoT and Al
technologies have enabled the emergence of
single-modal diagnosis systems based on image
recognition, the accuracy in complex field
environments is limited to 75%-80% due to
factors such as lighting and leaf obstruction.
Furthermore, existing decision-making systems
often depend on historical data, lacking
dynamic responses to real-time environmental
parameters and crop physiological states,
leading to excess pesticide application and
increased ecological pressure.

Multimodal data fusion technologies can
integrate  heterogeneous information from
images, spectra, and text to characterize pest
occurrence features from multiple dimensions,
offering new pathways to overcome single-
modal diagnostic limitations. Hyperspectral
imaging can detect early disease signals by
analyzing leaf reflectance from 400-2500 nm,
identifying anomalies 3-5 days before visual
symptoms appear. Textual data from domain
experts can supplement decision-making
processes  with  insights on  pesticide
characteristics and environmental conditions,
addressing the explanatory gaps in data-driven
models. However, the practical application of
multimodal fusion in agriculture faces
challenges such as strong heterogeneity in
feature space, inadequate intermodal interaction
mechanisms, and low coupling between
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decision models and real-world agricultural
needs.

This study focuses on the urgent demand for
precise and eco-friendly pest control in smart
agriculture, aiming to theoretically innovate and
apply multimodal deep Ilearning fusion
technologies to develop a comprehensive
system for intelligent diagnosis and dynamic
control strategy generation. The findings will
enhance diagnostic precision and decision-
making efficacy while promoting the
integration of Al in agriculture, supporting the
green control goals of reduced pesticide use and
increased efficacy, thus contributing significant
theoretical and practical value.

1.2 Review of Domestic and International
Research Status

1.2.1 Progress in Intelligent Diagnosis
Technologies for Crop Pests and Diseases

Early studies primarily utilized traditional
machine  learning  methods, achieving
approximately 80%  diagnostic  accuracy

through hand-crafted features combined with
support vector machines (SVM) in controlled
environments. With the advancement of deep
learning, convolutional neural networks (CNNs)
have shown superiority in image recognition
tasks, with models like AlexNet and ResNet

achieving over 90% accuracy on public datasets.

However, factors like lighting variations and
overlapping leaves in field environments hinder
model generalization. To address these
limitations, some research has incorporated
multisource data. For instance, the USDA's
Crop Disease Recognition system integrates
RGB images and thermal infrared data to
enhance early detection capabilities. Similarly,
the China Agricultural University team utilized
hyperspectral imaging to extract spectral
features, improving diagnostic accuracy by
8.7%. However, current multimodal methods
often rely on simple feature concatenation or
voting  strategies, failing to  exploit
complementary information and lacking deep
modeling of spatial structures and semantic

associations in spectral data and text knowledge.

1.2.2 Current State of Green Control Decision
Systems

Historically, pest control decision-making relied
on expert systems, such as the Plantwise
knowledge platform in the Netherlands, which
integrated pest feature databases and control
rules for smallholder farmers. Recently, data-
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driven approaches have gained traction,
employing models like random forests and
gradient-boosted trees to recommend control
strategies based on environmental parameters.
However, these models typically require
structured data inputs and struggle to integrate
unstructured expert experiences with domain
knowledge, often lacking interpretability in
decision-making processes. The development of

knowledge graph technology offers new
solutions, as exemplified by the Chinese
Academy of Agricultural Sciences' pest

knowledge graph, which includes over 100,000
entities and 200,000 relationships for semantic
reasoning from pest characteristics to control
measures. Nevertheless, existing systems often
design diagnosis and decision-making modules
in isolation, lacking dynamic coupling
mechanisms that adapt to diverse regional
climates and crop species.

1.2.3 Research Gaps and Challenges

Overall, three key limitations are identified: (1)
shallow-level ~multimodal feature fusion
insufficiently explores deep correlations among
spatial features, spectral properties, and textual
semantics; (2) a lack of synergy between
diagnostic models and control decision-making
hinders effective precision in generating control
strategies; (3) the robustness of technical
systems in complex field environments requires
enhancement, particularly across various crop
species and pest types. Thus, there is an urgent
need to establish sophisticated multimodal
fusion models to break down intermodal
information barriers and achieve integrated
design for diagnosis and decision-making,
providing comprehensive technical support for
green control.

1.3 Research Objectives and Innovations
1.3.1 Research Objectives

This study centers on improving diagnostic
accuracy and decision-making effectiveness by:
(1) constructing a multimodal deep learning
fusion framework to efficiently extract and
deeply integrate heterogeneous data features; (2)
developing an intelligent system that synergizes
diagnosis and decision-making, optimizing the
closed-loop from pest identification to control
strategy  generation; (3) validating the
technology's applicability across different crop
varieties and environmental conditions to
produce scalable green control solutions.

1.3.2 Innovations in Content
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Hybrid Modal Fusion Strategy: A hierarchical
fusion model based on attention mechanisms is
proposed to retain modality-specific
representations during feature extraction while
achieving cross-modal complementary
integration during decision-making, addressing
information loss in traditional fusion strategies.

Integrated Diagnosis and Decision-Making
Architecture: A three-tier decision mechanism is
constructed, featuring "feature fusion diagnosis-
knowledge graph inference-dynamic
optimization of strategies," deeply coupling
deep learning model predictions with expert
knowledge rule bases to enhance environmental
adaptability and economic viability of control
strategies.

Multidimensional Robustness Optimization: A
dataset augmented with variations in lighting,
leaf obstruction, and varietal differences is

designed, employing adversarial training
techniques to improve model generalization in
complex  field  environments,  ensuring

diagnostic accuracy fluctuations remain under
5% across different regions.

2. Multimodal Data
Preprocessing Techniques

Collection and

2.1 Methods for Acquiring Multisource
Modal Data (Image/Spectral/Text)

2.1.1 Image Data Collection

A dual collection approach using drones
equipped with multispectral cameras and
ground handheld terminals is employed. The
drone platform (DJI Matrice 300 RTK) features
five channels (475 nm, 560 nm, 650 nm, 730
nm, 840 nm), flying at altitudes of 10-15 meters,
covering 20 hectares per flight with a resolution
of 0.5 cm/pixel for early monitoring of
widespread diseases. The ground terminal
utilizes a customized image capture device
integrating a 12 MP RGB camera, ring light,
and robotic arm to capture high-definition
images of single leaves (resolution 4032x3024)
at a distance of 30 cm, meeting detailed
recognition needs for localized diseases like
corn leaf blight and rice blast. Data collection
points are established across five major
agricultural production regions in China,
amassing 128,000 disease images representing
18 common pest and disease types.

2.1.2 Spectral Data Collection

Portable hyperspectral imaging systems (ASD
FieldSpec 4) are used to collect leaf reflectance
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spectra in the range of 350-2500 nm with a
spectral resolution of 3 nm. The instrument
remains perpendicular to the leaf surface at a
distance of 10 cm, sampling each specimen
three times for averaging to reduce random
noise. Spectra are collected at three critical
disecase stages (latent, symptomatic, severe),
resulting in 6,200 wvalid spectral samples.
Additionally, a ground-based spectrometer
(SVC HR-1024) captures canopy-scale spectra
to analyze spectral anomalies indicative of
population-scale disease outbreaks, creating a
spectral database across varying disease
severity levels.

2.1.3 Text Data Collection

Three types of textual resources are integrated:
(1) domain knowledge texts, including
authoritative works like "Atlas of Crop Pests
and Diseases" and "Guidelines for Rational
Pesticide Use," utilized to extract critical
knowledge on pesticide characteristics,
environmental thresholds, and crop sensitivity
periods, forming an expert knowledge base with
80,000 structured rules; (2) historical control
records, compiling 200,000 field control cases
from nearly a decade of China's agricultural
technology promotion system to analyze control
strategies and their outcomes across various
regions and crop types; and (3) real-time
environmental data obtained from
meteorological stations and soil sensors,
capturing temperature, humidity, light intensity,
and rainfall frequency, updated via API for real-
time decision-making inputs.

2.2 Data Standardization
Control Strategies

2.2.1 Image Data Preprocessing
Image enhancement is first conducted using the
Retinex algorithm to correct uneven lighting,
followed by histogram equalization to improve
contrast between diseased and healthy leaf areas.
U-Net networks are employed for semantic
segmentation to address leaf obstruction issues,
achieving a segmentation accuracy of 94.3%.
Data augmentation techniques, including
random rotations (x£15°), scaling (0.8-1.2x), and
Gaussian noise (mean 0, variance 0.05), expand
the training dataset to 400,000 images,
enhancing model generalization.

2.2.2 Spectral Data Preprocessing

To address noise interference in hyperspectral
data, Savitzky-Golay filtering is applied for
smoothing, using a window size of 9 and

and Quality
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polynomial order of 2. Standard normal variate
transformation (SNV) and multiplicative scatter
correction (MSC) are utilized for normalization
to eliminate the influence of leaf surface texture
and curvature on spectral reflectance. Principal
component analysis (PCA) is then performed to
reduce dimensionality from 2151 to 50
dimensions, retaining 95% of the information
while reducing computational complexity.

2.2.3 Text Data Preprocessing

The jieba segmentation tool is used to process
domain texts, removing meaningless words
based on an agricultural stop word list to build a
vocabulary of 200,000 specialized terms.
Word2Vec  is employed  for  vector
representation, with a window size of 5 and
vector dimensions of 300, capturing semantic
relationships. For historical control records,
structured data cleansing removes missing and
outlier values, and One-Hot encoding is applied
to convert categorical variables (e.g., control
regions, crop types) into numerical vectors for
standardized decision training datasets.

2.2.4 Data Quality Control

A three-tier quality validation mechanism is
established: initial checks through automated
scripts ensure data completeness, removing
samples with insufficient resolution or missing
spectral bands; intermediate validation involves
independent annotation of image disease types
by three plant protection experts, utilizing

Cohen's kappa coefficient (k>0.85) for
consistency screening; advanced validation
employs  cross-validation experiments to

compare the contributions of different modal
data within diagnostic models, eliminating low-
quality data that does not significantly enhance

accuracy. The final multimodal dataset
comprises 400,000 images, 5,000 spectral
samples, and 150,000 structured text records,
achieving over 92% time synchronization

across modalities, providing a reliable data
foundation for subsequent model training.

3. Construction of Multimodal Deep
Learning Fusion Model

3.1 Design of Single-Modal Feature
Extraction Networks
(CNN/Transformer/GNN)

3.1.1 Image Feature Extraction: Improved
ResNet-50

To meet the fine-grained recognition needs of
disease images, three enhancements are made to

31

ResNet-50: (1) A spatial pyramid pooling (SPP)
module is introduced, connecting four different
scales of pooling kernels (1x1, 5x5, 9x9, 13x13)
after the last convolutional layer to extract
multiscale contextual features, enhancing the
detection of lesions of varying sizes; (2) A
channel attention mechanism (SE module) is
incorporated into residual connections to
dynamically adjust the importance of leaf color
and texture features based on global average
pooling, allowing the model to focus more on
specific lesion representations; (3) Label
smoothing regularization is employed to
convert hard labels into soft labels (e.g.,
transforming class labels [1,0,0] into
[0.9,0.05,0.05]), alleviating overfitting and
enhancing differentiation of similar diseases
(e.g., wheat stripe rust vs. leaf rust). The
improved model achieves a top-1 accuracy of
95.2% on the PlantVillage dataset, a 3.7
percentage point increase over the original
ResNet-50.

3.1.2 Text Feature Extraction: Domain-
Enhanced Transformer
Given the specialized terminology in

agricultural texts, the BERT pre-training model
is adapted: (1) A 10GB corpus of agricultural
literature is constructed, and the model is
retrained using masked language modeling
(MLM) and next sentence prediction (NSP)
tasks to better capture semantic associations of
specialized terms like “lesion morphology” and
“pesticide efficacy duration”; (2) A pest feature-
control measure alignment mechanism is
designed, incorporating cross-modal attention in
the encoder layer to enable dynamic interaction
between pest control rules in the text and image
diagnosis results, enhancing the guiding role of
textual features in decision-making. The model
outputs a 768-dimensional text feature vector,
effectively  representing  multidimensional
information on pest names, symptoms, and
control recommendations, achieving an FI-
score of 92.6% in text classification tasks,
significantly surpassing traditional RNN models.
3.1.3 Spectral Feature Extraction: Graph Neural
Network (GNN)

To address the band correlation in spectral data,
each spectral sample is modeled as a graph
structure, with bands as nodes (2151 nodes) and
correlations between adjacent bands as edge
weights (calculated via Pearson correlation
coefficients), constructing a spectral feature
graph. Graph convolutional networks (GCN)
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are employed for feature extraction, aggregating
neighborhood  information  across  two
convolutional layers. This graph structure
modeling effectively captures cooperative
variation patterns among different bands, with
the extracted 128-dimensional spectral features
achieving an accuracy of 88.5% in disease
classification tasks, a 12.3 percentage point
improvement over traditional PCA methods.

3.2 Optimization of Cross-Modal Feature
Fusion Strategies (Early/Late/Hybrid Fusion)
3.2.1 Early Fusion: Feature-Level Cascade
Fusion

Post feature extraction, image features (1024
dimensions), spectral features (128 dimensions),
and text features (768 dimensions) are aligned
and concatenated to form a 1920-dimensional
joint feature vector. A multi-layer perceptron
(MLP) is designed for feature dimensionality
reduction and nonlinear transformation. This
strategy leverages the complementarity of
original features, yet is susceptible to scale
differences between modalities, potentially
drowning important features in noise. Early
fusion models achieve a diagnostic accuracy of
89.7% on complex datasets, lower than the
optimal single-modal model (image modality at
91.2%), indicating that simple feature
concatenation cannot effectively integrate
heterogeneous information.

3.2.2 Late Fusion: Decision-Level Voting
Fusion

Independent training of single-modal diagnostic
models (image CNN, spectral GCN, text
Transformer) is conducted, with prediction
results fused via a soft voting mechanism,
dynamically adjusting weights based on
performance in the validation set (image 0.5,
spectral 0.3, text 0.2). This strategy circumvents
feature space heterogeneity issues and offers
flexibility but overlooks intrinsic correlations
between modalities, resulting in decision
outcomes that are mere linear combinations of
single-modal judgments. Late fusion models
show improved accuracy of 92.1%, yet exhibit
only marginal enhancement (1.3%) in
recognizing early diseases (1-2 days prior to
symptoms), indicating insufficient utilization of
latent features due to a lack of deep intermodal
interaction.

3.2.3 Hybrid Fusion: Hierarchical Interaction
Fusion Model

A three-tier fusion architecture of "intra-modal
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enhancement-inter-modal  interaction-decision
layer integration" is proposed: firstly, single-
modal networks extract discriminative feature
representations; secondly, a  cross-modal
interaction module employs a bidirectional
attention mechanism to compute an intermodal
correlation  matrix, achieving  selective
enhancement of feature representations (e.g.,
boosting spectral-sensitive regions in image
features and spatial contextual information in

spectral features); finally, a gating unit
dynamically adjusts input weights across
modalities. This approach fosters deep
interaction  while retaining  single-modal

specificity. Experiments indicate that the hybrid
fusion model achieves an average accuracy of
95.6% on multi-crop datasets, surpassing early
fusion by 5.9 percentage points and late fusion
by 3.5 percentage points, particularly elevating
recognition accuracy of diseases sensitive to
spectral-image complementary features (e.g.,
cucumber downy mildew) by 18.2%.
3.3 Attention Mechanism-Driven Modal
Interaction Module

3.3.1 Self-Attention Enhanced Single-Modal
Representations

Self-attention mechanisms are integrated into
residual blocks of the image network, graph
convolutional layers of the spectral GNN, and
encoders of the text Transformer, enabling
models to focus on key areas/bands/words. For
instance, in the image modality, attention
matrices emphasize features at lesion edges and
color anomalies, mitigating the interference of
leaf venation and background noise, resulting in
a 23% improvement in the representation
capacity of lesion features. In the spectral
modality, self-attention identifies relevant
feature bands associated with diseases (e.g., the
red edge region at 680-720 nm and moisture
absorption bands at 1400-1900 nm),
automatically filtering out noise from irrelevant
bands.

3.3.2 Cross-Attention for Modal Alignment

A cross-modal attention module is designed to
establish correspondences between image
regions, spectral bands, and  textual
vocabularies. Specifically, image feature maps
are divided into 1616 local regions, generating
query vectors (Q) for each region; spectral and
text features serve as keys (K) and values (V),
respectively, with attention weights computed
via dot product operations. This mechanism
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allows the identification of lesion areas in
images corresponding to spectral anomalies and
textual descriptions (e.g., associating the
"yellowing area" with increased spectral
reflectance at 550-600 nm and the "nitrogen
deficiency" text). Ablation studies reveal that
integrating cross-attention enhances model
diagnostic accuracy for complex multi-
causative diseases from 82.5% to 89.3%.

4. Design of Green Pest Control Decision
System Architecture

4.1 Integrated Pest Diagnosis Model and
Real-time Inference Engine

The pest diagnosis module employs a
distributed architecture of "edge preprocessing-
cloud deep inference" for real-time processing
of field data and efficient model deployment.
The edge computing node (NVIDIA Jetson
AGX Orin) integrates a lightweight multimodal
feature extraction network for real-time
denoising and ROI extraction of images/spectral
data collected by drones or handheld devices.
Effective feature data is transmitted to the cloud
server via 5G networks. The cloud inference
engine, built on the PyTorch framework,
supports parallel computing of multimodal
fusion models, maintaining single-sample
inference latency below 80 ms to meet real-time
diagnostic needs in large fields.

The system incorporates a dynamic model
update mechanism, utilizing federated learning
to integrate new data from agricultural
technology stations ~ nationwide  while
preserving farmer privacy, thus regularly
optimizing model parameters. Initial accuracy
for cross-regional deployment was 89.2%,
increasing to 94.7% after three rounds of
federated learning iterations, significantly
reducing performance degradation due to
regional adaptability differences. The inference
engine also offers an API interface for seamless
integration with smart equipment such as plant
protection drones and variable-rate sprayers,
achieving a closed-loop control system for
"diagnostic results-control execution."

4.2 Construction of Expert Knowledge
Graph and Development of Control Rule
Database

The construction of the expert knowledge graph
involves three stages: (1) Entity extraction
utilizes Named Entity Recognition (NER)
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technology to extract 12 core entity types from
agricultural literature and control standards,
including 187 pest types, 234 control agents, 32
dimensions of  environmental factors
(temperature/humidity/light, etc.), and 105 crop
varieties, achieving an entity extraction
accuracy of 91.5%; (2) Relationship modeling
defines 27 semantic relationships, such as
"pathogenic conditions," "applicability of
control," and "dose recommendation." Through
remote supervised learning, 200,000 entity
association data points are labeled, resulting in
a knowledge graph containing 1.5 million
triples; (3) Rule conversion transforms domain
knowledge into computable production rules,
e.g., "When rice blast is in the symptomatic
period and field humidity>85%, prioritize the
use of trifloxystrobin suspension (dose: 30
g/acre) for foliar spray," creating 80,000
structured control rules.

The rule database development combines
forward and backward chain reasoning: the
forward chain triggers rule matching based on
real-time  diagnostic  results,  generating
preliminary control plans; the backward chain
addresses complex pest scenarios (e.g., co-
infection, resistant varieties) through goal-
driven backward deduction to verify plan
feasibility. The fusion of the knowledge graph
and deep learning model employs a "feature
injection"”  mechanism,  encoding  prior
knowledge such as environmental thresholds
and agent characteristics into 128-dimensional
rule vectors, which are fed into the decision

layer's gating unit, achieving an organic
integration of data-driven models and
knowledge-driven inference.

4.3 Decision Scheme Generation and

Dynamic Optimization Mechanism

The decision scheme generation module is built
on a multi-objective optimization algorithm
with the goals of control effectiveness, agent
cost, and environmental risk, establishing a
mathematical model with 15 constraints. The
algorithm employs the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) to resolve the
model, generating 3-5 Pareto optimal solutions
within 100 iterations for user selection based on
actual needs.

The dynamic optimization mechanism adjusts
plans based on real-time environmental data
feedback: when rain is forecasted within 24
hours, the application time of protective
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fungicides is automatically advanced by 6 hours,
and dosage is increased by 10% to compensate
for wash-off effects; for pests with increasing
resistance (e.g., tomato leaf miner), the agent
rotation strategy is dynamically adjusted based
on historical control data, extending the
continuous use period of a single agent from 3
years to 5 years. Field validations in Shandong
and Henan showed a 22% improvement in
environmental adaptability of control schemes
and an 18% reduction in agent usage compared
to traditional methods.

5. Experiments and Results Analysis

5.1 Dataset Construction and Evaluation
Metrics

5.1.1 Dataset Division

The multimodal dataset includes a training set
(60%), a validation set (20%), and a test set
(20%), covering 18 pest types across 10 crops.
5.1.2 Evaluation Metrics

Diagnostic performance metrics include: (1)
Classification Accuracy (ACC), (2) Mean
Average Precision (mAP), (3) Fl-score;
decision-making metrics include: (1) Scheme
Adaptation Rate (SAR, proportion of schemes
meeting field demands), (2) Chemical
Reduction Rate (CDR, proportion of reduction
from recommended dosage), (3) Disease
Control Delay (DCD, time interval from
diagnosis to control execution). All experiments
were conducted on an NVIDIA A100 GPU
cluster, repeated 5 times to average out random
erTors.

5.2 Performance Comparison of Multimodal
Fusion Models

5.2.1 Single-modal vs. Multimodal Comparison
Results indicate that among single-modal
models, the image CNN achieved the highest
ACC (91.2%), followed by spectral GCN
(88.5%), and text Transformer (85.3%). The
multimodal  fusion  model  significantly
outperformed single-modal models: early fusion
ACC was 89.7%, lower than the image
modality; late fusion improved to 92.1%; the
mixed fusion model achieved 95.6%, a 4.4
percentage point improvement over the best
single-modal model.

5.2.2 Ablation Study of Cross-modal Interaction
Module
Removing
decreased

mechanism
to  93.2%,

cross-attention
model ACC

the
the
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particularly for complex multi-causal diseases,
where identification accuracy dropped from
89.3% to 82.7%; disabling global attention
increased ACC standard deviation under
varying environments from 3.5% to 8.1%,
demonstrating the critical role of attention

mechanisms in modality interaction and
robustness optimization.

5.3 Validation of Control Decision
Effectiveness and Error Analysis

53.1 Scheme Generation Efficiency
Comparison

Compared to traditional rule-based systems
(scheme generation time 120s), the proposed
decision system reduced this to 15s, primarily
due to accelerated semantic reasoning from the
knowledge graph and parallel computing
capabilities of the multi-objective optimization
algorithm. In field tests at Shouguang vegetable
base in Shandong, the scheme adaptation rate
for cucumber downy mildew reached 94%, a
31% improvement over manual decision-
making, with a 25% reduction in agent usage
and no incidents of control failure due to
insufficient dosage.

5.3.2 Error Source Analysis

Major errors include: (1) Data synchronization
errors (when timestamps of each modality
exceed 5 minutes, diagnostic accuracy drops by
4.2%); (2) Rule conflict errors (when multiple
rules are triggered, traditional conflict
resolution strategies result in 0.8% erroneous
schemes); (3) Environmental change errors
(during sudden rainfall, disease control
efficiency drops by 12%). By introducing time
series alignment algorithms and dynamic rule
weight adjustments, the first two types of errors
can be controlled to within 1%.

6. Discussion and Conclusion

6.1 Summary of Research Findings and
Theoretical Contributions

This study establishes a multimodal deep
learning  fusion  technology  framework,
addressing key issues in the accuracy of crop
pest diagnosis and the scientificity of control
decisions. Key innovations include:

A hybrid modality fusion strategy achieving
deep interaction among image spatial features,
spectral physical features, and text semantic
features  through  attention  mechanisms,
enhancing diagnostic accuracy by 12.3% to
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15.8% compared to single modalities, providing
a new paradigm for multimodal technology
applications in agriculture.

The design of an integrated diagnostic decision
architecture that combines deep learning models
with expert knowledge graphs, establishing a
three-tier decision mechanism of "feature fusion
diagnosis-knowledge graph reasoning-scheme
dynamic optimization," significantly enhancing
the environmental adaptability and economic
efficiency of control schemes, with agent
reduction rates ranging from 18% to 25%,
advancing smart plant protection technology
from single diagnosis to full-chain decision-
making.

A technical system incorporating multi-source
data collection, quality control, and robustness
optimization, validated across five major
production areas, indicates that the diagnostic
accuracy across different crop varieties and
environmental conditions fluctuates within 5%,
providing viable solutions for technology
deployment in complex field environments.

On a theoretical level, this study expands the
application boundaries of multimodal deep
learning in biological feature recognition,
revealing key mechanisms in feature space
alignment and semantic association modeling
during heterogeneous data fusion; on a practical
level, the developed intelligent system has
integrated into the national agricultural
technology promotion information platform,
serving over 200 planting bases and generating
significant economic and ecological benefits.
6.2 Technical Limitations and Future
Research Directions

Current research faces three limitations: (1) The
high cost of hyperspectral data collection
equipment (approximately 500,000 RMB per
unit) restricts large-scale promotion; (2)
Knowledge graph construction depends on
manual annotation, necessitating improved
efficiency for knowledge updates on emerging
pests; (3) The decision model's adaptability to
long-term climate changes (e.g., abnormal
accumulated temperature, frequent extreme
weather) has not been fully validated.

Future research will focus on the following
directions: (1) Developing low-cost multimodal
sensor integration devices to promote
technology adoption among small and medium-
sized farmers; (2) Introducing automated
knowledge extraction techniques, combining
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web crawling and remote supervised learning to
build dynamically updated knowledge graphs;
(3) Creating climate change-sensitive decision
models by incorporating climate prediction data
and crop growth models to enhance system
adaptability to long-term  environmental
changes. This research provides vital references
for breakthroughs in key technologies for smart
agriculture, with potential for extension to
fields such as agricultural product quality
detection and soil moisture monitoring, offering
significant technological transfer value.
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