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Abstract:With the deepening of Industry 4.0,
the integration of artificial intelligence
technology and the mechanical
manufacturing industry has become the core
driving force for promoting industrial
upgrading. This article takes the entire life
cycle of mechanical manufacturing as the
research object, and systematically reviews
the application and optimization
achievements of artificial intelligence in
various stages of design, manufacturing, and
operation. By analyzing the innovative
applications of AI technologies such as
genetic algorithms and neural networks in
the design phase, the practice of integrating
intelligent manufacturing systems with
industrial big data in the manufacturing
phase, and breakthroughs in intelligent fault
diagnosis and predictive maintenance in the
operation and maintenance phase, the key
role of AI technology in improving
manufacturing efficiency, reducing costs, and
enhancing reliability has been revealed.
Provide theoretical and practical references
for the intelligent transformation of the
mechanical manufacturing industry.
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1.Introduction

1.1 Research Background and Significance
As a pillar industry of the national economy, the
development level of the mechanical
manufacturing industry is directly related to the
country's industrialization process and
comprehensive national strength. In the context
of increasingly fierce global industrial
competition, traditional mechanical
manufacturing models face bottlenecks such as

low efficiency, resource waste, and insufficient
innovation, and urgently need to achieve
transformation and upgrading through
technological innovation. The rapid
development of artificial intelligence technology
has provided a new paradigm for optimizing the
entire life cycle of mechanical manufacturing.
Its abilities such as self-learning, intelligent
decision-making, and accurate prediction can
run through the entire process of product design,
processing and manufacturing, operation and
maintenance services, and even scrapping and
recycling, promoting the transformation of
manufacturing mode from "experience driven"
to "data-driven".
From a practical perspective, the deep
integration of artificial intelligence and
mechanical manufacturing can not only
significantly improve production efficiency -
according to the International Federation of
Robotics (IFR) data, the introduction of AI
optimized intelligent production lines can
increase production efficiency by more than
30%, but also reduce energy and raw material
consumption through precise regulation, helping
to achieve the "dual carbon" goal. Meanwhile,
AI based predictive maintenance can reduce
equipment downtime by 50%, significantly
improving the economy and reliability of the
entire product lifecycle. Therefore, the
systematic review of the application
achievements and optimization paths of artificial
intelligence in the entire life cycle of mechanical
manufacturing has important theoretical and
practical value for promoting industry
technological innovation and enhancing industry
competitiveness.

1.2 Current Research Status at Home and
Abroad
The research on artificial intelligence in the field
of mechanical manufacturing started earlier in
foreign countries, and the application of expert
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systems in process planning began to be
explored in the 1990s. In recent years,
manufacturing powerhouses such as the United
States and Germany have promoted the deep
penetration of AI technology throughout its
entire lifecycle through initiatives such as the
"Advanced Manufacturing Leadership Strategy"
and "Industry 4.0". For example, the digital twin
platform developed by Siemens AG in Germany
has achieved real-time mapping of product
design and manufacturing processes, and its
quality inspection system based on deep
learning has an accuracy rate of 99.8%; General
Electric's (GE) Predix platform utilizes AI
algorithms to analyze operational data of aircraft
engines, enabling the commercial application of
predictive maintenance.
Although domestic research started relatively
late, it has developed rapidly. In the design
phase, teams from universities such as Tsinghua
University and Shanghai Jiao Tong University
have made breakthroughs in optimizing
complex mechanical structures based on genetic
algorithms, and the related achievements have
been applied to the design of key components
for high-speed rail; During the manufacturing
phase, the smart factory built by Huawei in
collaboration with Foxconn has reduced
production pace by 20% through an AI
scheduling system; In the field of operation and
maintenance, Sany Heavy Industry's "Root
Cloud" platform utilizes AI to diagnose
engineering machinery faults, increasing
response speed by 60%. However, comparative
analysis shows that there are still problems with
fragmented technology and insufficient cross
stage collaboration in domestic research,
especially in terms of independent research and
development of core algorithms and full
lifecycle data integration, which lags behind
advanced levels abroad.

2.Overview of the Entire Lifecycle of
Mechanical Manufacturing

2.1 Concept and Process of the Whole Life
Cycle of Mechanical Manufacturing
The full life cycle of mechanical manufacturing
refers to the complete closed-loop process from
product demand analysis, through design and
development, process planning, production and
manufacturing, assembly and debugging, sales
and use, maintenance and upkeep, to final
scrapping and recycling. This process presents

significant stage characteristics and close
internal connections: the design stage
determines more than 70% of the cost and
performance of the product, and its output
three-dimensional model and process parameters
directly guide manufacturing execution; During
the manufacturing phase, design intent is
achieved through material conversion and
precision control, while the process data
generated feeds back into design optimization;
During the operation and maintenance phase,
equipment status monitoring and performance
feedback are used to form improvement basis
for the preceding stages.
In the digital environment, deep collaboration is
achieved through data flow at all stages of the
entire lifecycle. For example, CAD models in
the design phase can be directly imported into
CAM systems to generate machining programs,
and IoT devices in the manufacturing process
can collect machining data in real-time, compare
it with design parameters, and generate
deviation analysis reports; The sensor data
during the operation and maintenance phase is
processed through cloud computing platforms to
provide reliability improvement suggestions for
the design of next-generation products. This
"data-driven" process reconstruction breaks the
information silos in various stages of traditional
manufacturing and creates conditions for the
comprehensive penetration of artificial
intelligence technology.

2.2 Problems in the Entire Lifecycle of
Traditional Mechanical Manufacturing
The traditional mechanical manufacturing model
has many pain points in full lifecycle
management. During the design phase,
excessive reliance on engineer experience leads
to insufficient innovation and long iteration
cycles for multiple solutions. Taking automotive
engine design as an example, traditional
parameter optimization requires repeated
physical prototype testing, and the development
cycle often exceeds 18 months; Meanwhile, the
disconnect between design and manufacturing
processes can easily lead to "manufacturability"
issues. According to industry statistics, about
30% of design changes stem from process
conflicts during the manufacturing process.
The core issue faced during the manufacturing
phase is the contradiction between production
efficiency and quality stability. Traditional
production lines use fixed process parameters,
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which are difficult to adapt to fluctuations in
raw material performance and changes in
equipment status, resulting in high scrap rates;
Production scheduling relies on manual
experience, and in the multi variety and small
batch production mode, equipment utilization is
usually less than 60%. According to statistics
from a certain heavy machinery factory,
downtime caused by poor process connections
accounts for over 25% of the total production
time.
The operation and maintenance phase is limited
to passive maintenance mode, and equipment
failures are mostly dealt with after the fact,
resulting in huge losses from unplanned
downtime. Traditional time-based preventive
maintenance faces the dilemma of "excessive
maintenance" or "insufficient maintenance".
Data from a wind power company shows that
when adopting a regular maintenance strategy,
maintenance costs account for 35% of the
equipment's total lifecycle costs, of which about
40% are unnecessary replacement operations. In
addition, the inventory management of spare
parts is extensive, often resulting in a
phenomenon of "backlog and shortage
coexisting", with a capital occupancy rate of up
to 20% of the company's current assets.

3.Application and Optimization of Artificial
Intelligence Technology in the Design Stage of
Mechanical Manufacturing

3.1 Artificial Intelligence Helps Innovate
Design Methods
3.1.1 Design optimization based on genetic
algorithm
Genetic algorithms simulate natural selection
and genetic mechanisms in biological evolution,
achieving multi-objective optimization solutions
through encoding, selection, crossover, mutation,
and other operations, demonstrating unique
advantages in optimizing mechanical structural
parameters. The core principle is to transform
design variables into "chromosomes", evaluate
the advantages and disadvantages of schemes
through fitness functions, and iteratively screen
for the optimal solution. In the design of
engineering robotic arms, genetic algorithms are
used to optimize 12 parameters such as arm
length and cross-sectional dimensions, which
can reduce self weight by 15% -20% while
satisfying strength and stiffness constraints. The
optimization case of a certain excavator working

device shows that the traditional trial and error
method requires 200 iterations to converge,
while the genetic algorithm only requires 50
iterations to obtain a better solution, resulting in
a 75% increase in design efficiency.
3.1.2 Design Optimization Based on Neural
Networks
Neural networks simulate the connectivity
patterns of human brain neurons through
multi-layer nonlinear mapping, possessing
strong self-learning and generalization abilities,
and are particularly suitable for handling multi
factor coupling problems in complex
mechanical systems. In material performance
design, alloy composition and heat treatment
parameters are used as input layers, and
mechanical properties are used as output layers.
A high-precision prediction model can be
established through BP neural network training.
The design practice of a certain high-strength
steel shows that the prediction error of this
method for yield strength is less than 3%, which
is more than 60% lower than traditional
empirical formulas. In terms of mechanism
dynamics optimization, recursive neural
networks can simulate the dynamic response of
mechanical systems. Through neural network
optimization, the positioning accuracy of a
precision machine tool feed system has been
improved from 0.01mm to 0.005mm, and the
dynamic response speed has been increased by
40%.

3.2 Innovative Design Concepts Based on
Artificial Intelligence
3.2.1 Biomimetic Design
Biomimetic design achieves mechanical system
innovation by simulating biological structures
and functions, and artificial intelligence
technology provides efficient tools for this
process. Image recognition algorithms based on
deep learning can extract feature parameters
from biological morphology databases and
generate bio like structures through topology
optimization. In the design of the robotic arm,
the MIT team used convolutional neural
networks to analyze the motion characteristics
of octopus tentacles and developed a flexible
robotic arm with 32 degrees of freedom, which
has a gripping adaptability three times higher
than traditional structures. A certain agricultural
machinery research institute simulated the
jumping mechanism of locusts' hind legs
through AI, and designed a small seeder with a
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50% increase in obstacle crossing ability and a
25% reduction in energy consumption.
3.2.2 Adaptive Design
Adaptive design emphasizes the real-time
response capability of mechanical systems to
environmental changes, and AI algorithms are
the core to achieve this goal. By combining
sensor data with reinforcement learning, devices
can autonomously adjust parameters to maintain
optimal performance. In high-precision
machining equipment, an adaptive control
system based on Q-learning can compensate for
errors caused by temperature changes in real
time. After applying this technology to a certain
horizontal machining center, the dimensional
accuracy stability of long-term machining has
been improved by 60%. In marine engineering
equipment, adaptive pile leg design utilizes AI
to analyze wave load data, dynamically adjust
structural stiffness, and improve platform wave
resistance by 40% while reducing self weight by
15%.

3.3 Development of Intelligent Design
Software and Platforms
3.3.1 Intelligent Upgrade of CAD/CAE/CAM
Software
Traditional CAD/CAE/CAM software has
gradually integrated AI functional modules to
achieve intelligent assistance in the design
process. The newly added Knowledge Based
Engineering (KBE) module in the CAD system
can automatically retrieve similar design cases
and generate initial solutions. After being
applied by a certain automotive parts enterprise,
the design cycle for new parts has been
shortened by 40%. The machine learning
algorithm introduced in CAE analysis can
establish a surrogate model based on historical
simulation data, reducing the mechanical
analysis time of complex structures from hours
to minutes while maintaining an accuracy of
over 95%. The AI process planning module of
the CAM system can automatically generate
optimal cutting parameters based on material
characteristics and equipment status. In the
machining of a certain aircraft engine blade, this
technology has extended tool life by 30% and
improved machining efficiency by 25%.
3.3.2 Application and advantages of cloud
design platform
The cloud design platform relies on cloud
computing resources to achieve multi terminal
collaborative design, with AI technology

responsible for intelligent retrieval, version
management, and conflict detection functions.
The platform understands design requirements
through natural language processing technology
and automatically pushes relevant standards and
cases; A conflict detection algorithm based on
graph neural networks can identify parameter
conflicts in real-time in multi team parallel
design. The global collaborative design project
of a multinational construction machinery
enterprise shows that after adopting a cloud
based AI platform, the number of design
changes is reduced by 50%, and the efficiency
of cross regional team communication is
improved by 60%. In addition, AI energy
consumption analysis tools on cloud platforms
can evaluate the carbon emissions of products
throughout their entire lifecycle during the
design phase, providing quantitative basis for
green design.

4.Application and Optimization of Artificial
Intelligence in the Mechanical Manufacturing
Stage

4.1 Construction and Key Technologies of
Intelligent Manufacturing Systems
4.1.1 Analysis of Intelligent Manufacturing
System Architecture
The intelligent manufacturing system adopts a
three-layer architecture of "perception layer
network layer application layer", with AI
technology playing a core role in each layer. The
perception layer collects real-time data through
industrial sensors, machine vision and other
devices, and implements data preprocessing and
anomaly detection based on edge AI chips. The
visual inspection system of an electronic
assembly line adopts a lightweight CNN
algorithm, with a defect recognition speed of
300 frames per second and an accuracy rate of
99.7%; The network layer relies on 5G and
industrial Ethernet to build low latency data
transmission channels, and AI traffic scheduling
algorithms can ensure the priority transmission
of critical data. A certain smart factory has
shortened the communication response time
between devices to less than 10ms through this
technology; The application layer includes
functional modules such as production
scheduling and quality control. The decision
system based on deep learning can achieve
dynamic optimization. The AI scheduling
system in a certain automotive welding
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workshop has increased the balance rate of the
production line from 75% to 92%.
4.1.2 Key Technology Integration and
Application
The effective operation of intelligent
manufacturing systems relies on the integration
of AI with technologies such as big data, the
Internet of Things, and digital twins. In a certain
engine cylinder block machining line, more than
300 real-time parameters collected by IoT
devices are cleaned by a big data platform and
input into an LSTM neural network to predict
machining quality deviations with an accuracy
rate of 92%; The digital twin model maps the
physical device status through AI algorithms,
achieving virtual debugging and process
optimization, and shortening the production
cycle of the new production line by 40%. The
elastic computing power provided by cloud
computing supports large-scale training of AI
models. A certain bearing enterprise, through
cloud based federated learning, jointly trained a
quality prediction model with multiple factories
while protecting data privacy, reducing the error
rate by 15%. The collaborative application of
these technologies has built a closed-loop
system of "physical entity digital virtual entity
AI decision-making".

4.2 Optimization of Intelligent
Manufacturing Execution Process
4.2.1 Process Parameters and Path Optimization
AI algorithms analyze historical processing data
to construct a mapping relationship between
process parameters and quality indicators,
achieving dynamic optimization. In the milling
process of aviation titanium alloy parts, a
parameter optimization system based on
reinforcement learning can adjust cutting speed,
feed rate and other parameters in real time,
reducing surface roughness by 30% and tool
wear by 25%. In terms of path optimization, the
improved A * algorithm combined with a
three-dimensional model of workshop layout is
used to plan the optimal path for AGV material
transportation. After application in a
construction machinery factory, the material
delivery time is reduced by 40% and AGV
energy consumption is reduced by 20%. For
complex surface machining, the deep learning
based tool path generation algorithm can
automatically avoid interference areas. In the
machining of a certain steam turbine blade, the
CNC program generation time was shortened

from 8 hours to 1 hour.
4.2.2 Quality control and intelligent fault
diagnosis
The AI driven quality control system achieves
full process monitoring through multi-source
data fusion. A certain gearbox production line
inputs machine vision images, sensor data, and
spectral analysis results into a CNN-LSTM
hybrid model to achieve early warning of gear
machining defects, reducing the defect rate by
60%. In the field of equipment fault diagnosis,
deep learning models based on vibration signals
can identify 98% of early bearing faults, with a
30 day early warning compared to traditional
spectrum analysis; The AI diagnostic system of
a certain steel rolling mill has improved the
accuracy of fault location to 95% and reduced
maintenance time by 50% by analyzing motor
current signals. In addition, the application of
federated learning technology has solved the
problem of data silos in multiple factory areas,
and the generalization ability of the jointly
trained fault diagnosis model has been
significantly enhanced.

4.3 Deep Integration of Industrial Big Data
and Artificial Intelligence
4.3.1 Collection and Processing of Industrial
Big Data
The sources of industrial big data cover multiple
dimensions such as equipment sensors,
production execution systems (MES), ERP, etc.
Its processing requires key steps such as data
cleaning and feature engineering. AI technology
plays an important role in data preprocessing:
outlier detection based on clustering algorithms
can remove 10% -15% of invalid data; The
automatic feature extraction algorithm can
extract more than 200 effective features from
the original vibration signal, which is 10 times
more efficient than manual screening. The big
data platform of a certain steel enterprise adopts
a federated learning framework to achieve
collaborative analysis of data from various
factories without sharing raw data, resulting in a
40% increase in data processing efficiency. The
deployment of edge computing nodes enables
the real-time data processing delay to be
controlled within 50ms, meeting the
high-precision control requirements.
4.3.2 Application of Industrial Big Data
Analysis Driven by Artificial Intelligence
The deep mining of industrial big data by AI
algorithms provides multidimensional support
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for manufacturing process optimization. In
terms of energy consumption management, the
AI analysis system of a cement plant identified
three key optimization points by correlating
production parameters with energy consumption
data, resulting in an 8% reduction in unit
product electricity consumption; In the field of
equipment efficiency analysis, the OEE
prediction model based on random forest can
provide a 2-hour warning of performance
decline trend. After application in a certain
automotive welding workshop, the
comprehensive efficiency of the equipment
increased by 12%. In production scheduling
optimization, an improved genetic algorithm
combined with real-time order data dynamically
adjusted production plans, resulting in a 30%
reduction in delivery cycle and a 25% reduction
in work in progress inventory for a certain
household appliance enterprise. These
applications indicate that the integration of
industrial big data and AI is shifting from
passive analysis to active decision-making.

5. Application and Optimization of Artificial
Intelligence in the Operation and
Maintenance Stage of Mechanical
Manufacturing

5.1 Intelligent Fault Diagnosis and Predictive
Maintenance
5.1.1 Principles and Methods of Intelligent Fault
Diagnosis Technology
Intelligent fault diagnosis uses AI algorithms to
analyze equipment operation data, achieving
fault type recognition and localization. Deep
learning models based on vibration signals, such
as CNN and Transformer, can automatically
extract fault features. The diagnostic system of a
certain wind turbine adopts a dual channel CNN
model, and the recognition accuracy of bearing
faults reaches 99.2%, which is 15% higher than
traditional wavelet analysis. The combination of
voiceprint diagnosis technology with Mel
spectrum and LSTM network can identify 7
typical faults in hydraulic systems. After the
application of a certain injection molding
machine, the early fault detection rate increased
by 50%. For complex electromechanical
systems, the integration of knowledge graph and
deep learning has achieved root cause analysis
of faults. The diagnostic system of a certain
machine tool factory can locate 90% of
composite faults within 30 seconds, guiding

maintenance personnel to quickly troubleshoot.
5.1.2 Predictive Maintenance Strategy and
Implementation
Predictive maintenance is based on AI
predictive models to determine the optimal
maintenance timing and achieve "on-demand
maintenance". The AI prediction system of a
certain subway vehicle depot predicted the wear
trend 14 days in advance by analyzing wheelset
vibration data, extended maintenance intervals
by 50%, and avoided 3 major failures. The
implementation process is divided into three
stages: data collection, model training, and
decision execution: deploying edge sensors to
collect real-time data; Cloud trained temporal
prediction models (such as Temporal Fusion
Transformer) achieve Remaining Life (RUL)
prediction; Finally, the maintenance plan is
generated through optimization algorithms. The
practice of a certain petrochemical enterprise
shows that predictive maintenance reduces
maintenance costs by 30%, increases equipment
availability by 20%, and has a return on
investment cycle of about 18 months.

5.2 Mechanical Performance Optimization
and Maintenance Plan Scheduling
5.2.1 Artificial intelligence methods for
optimizing mechanical performance
AI technology achieves dynamic optimization of
mechanical systems by analyzing the correlation
between operational data and performance
parameters. In engine performance tuning,
reinforcement learning algorithms can
automatically optimize parameters such as fuel
injection timing and throttle opening. After
being applied to a certain car engine, fuel
efficiency increased by 5% and emissions
decreased by 8%. For wind power equipment, a
deep learning model based on meteorological
data and power generation efficiency can adjust
blade angles in real time, increasing power
generation by 10%. The AI performance
optimization system of a certain shield tunneling
machine extends tool life by 30% and improves
construction efficiency by 25% by analyzing
geological data and propulsion parameters.
These methods break through the limitations of
traditional empirical tuning and achieve
continuous dynamic optimization of
performance.
5.2.2 Intelligence of Maintenance Planning and
Scheduling
AI optimization algorithms can balance

Industry Science and Engineering Vol. 2 No. 5, 2025

18



maintenance requirements and production plans,
achieving efficient resource allocation. The
scheduling system of a certain aircraft engine
maintenance workshop adopts an improved
genetic algorithm, which reduces equipment idle
time by 35% while meeting skill matching and
schedule constraints. In multi device
collaborative maintenance, the scheduling
model based on graph neural network can
identify critical paths. After application in a
certain chemical plant, the maintenance
downtime of the entire plant was reduced by
20%. By combining virtual maintenance
simulation with digital twins, process conflicts
can be detected in advance, and the AI
scheduling system of a certain nuclear power
plant has shortened the overhaul cycle by 15
days. In addition, natural language processing
technology transforms maintenance manuals
into intelligent decision support, increasing the
fault handling efficiency of novice maintenance
personnel by 60%.

5.3 Consumables Management and Inventory
Optimization
5.3.1 AI based consumables demand forecasting
The AI prediction model achieves accurate
prediction of consumable demand by analyzing
historical consumption data, production plans,
and external factors. The LSTM demand
forecasting system of a certain machine tool
factory controls the prediction error of tool
consumption within 8%, which is 12% lower
than the traditional exponential smoothing
method. The XGBoost model, which considers
seasonal fluctuations, performs well in bearing
inventory prediction. After being applied by a
certain automotive parts enterprise, the
prediction accuracy has increased by 20%. For
scenarios involving multiple varieties and small
batches, federated learning models can
aggregate similar product data, resulting in a
15% improvement in consumable prediction
accuracy for a precision instrument factory.
These technologies have shifted consumables
management from "passive response" to "active
material preparation", significantly reducing
capital occupation.
5.3.2 Inventory optimization strategy and
implementation
AI driven inventory optimization achieves a
balance between cost and service level by
dynamically adjusting safety stock and
replenishment strategies. The inventory

optimization system of a certain construction
machinery enterprise adopts reinforcement
learning algorithm to adjust replenishment
points based on real-time consumption speed,
resulting in a 30% increase in inventory
turnover and a 40% decrease in out of stock rate.
Combining the Internet of Things with an
intelligent shelving system, real-time inventory
monitoring is achieved through RFID and AI
counting algorithms, resulting in a 90% increase
in inventory efficiency for a certain automated
warehouse. For cross-border supply chains, a
global inventory allocation model based on
graph neural networks can balance regional
demand differences. After being applied by a
hydraulic parts enterprise, cross-border transfer
costs were reduced by 25%. These strategies
have transformed inventory management from
"experience judgment" to "data-driven"
precision decision-making.

6. Conclusion
This study systematically reviewed the current
application status and optimization results of
artificial intelligence technology in various
stages of the entire life cycle of mechanical
manufacturing, and constructed a complete AI
application framework from design to operation
and maintenance. Research has shown that AI
technology significantly enhances the flexibility
and economy of mechanical manufacturing
systems by empowering design innovation,
improving manufacturing efficiency, and
optimizing operation and maintenance services.
In the design phase, the application of genetic
algorithms and neural networks shortens the
research and development cycle by 30-50%;
Intelligent optimization systems during the
manufacturing phase can reduce costs by
12-18%; The predictive maintenance strategy
during the operation and maintenance phase
improves equipment availability by 20-30%.
The study also reveals that current applications
still face multiple challenges such as data quality,
technology integration, and cost control, which
need to be addressed through interdisciplinary
research and industry collaboration. In the future,
we should focus on breakthroughs in key
technologies such as small sample learning and
interpretable AI, and build a standardized
technical system and ecological platform. With
the continuous iteration of AI technology and
the deepening of industrial practice, the
optimization of the entire life cycle of
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mechanical manufacturing will develop towards
a smarter, greener, and more efficient direction,
ultimately achieving a leap from "intelligent
manufacturing" to "smart manufacturing" and
providing core driving force for the high-quality
development of the manufacturing industry.
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