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Abstract: As a key barometer of China’s
capital markets, the CSI 300 Index holds
significant value for investment
decision-making and risk management. In
addressing the limitations of conventional
forecasting models in processing nonlinear
and non-stationary financial time series data,
this study proposes a hybrid prediction
framework that integrates Autoregressive
Integrated Moving Average (ARIMA),
Variational Mode Decomposition (VMD), and
Long Short-Term Memory (LSTM) networks.
The proposed model employs a multi-stage
strategy involving signal decomposition,
feature modelling, and result integration to
comprehensively capture both the linear
trends and nonlinear fluctuations in time
series data, thereby enhancing forecasting
accuracy and generalization capability. Based
on historical CSI 300 data, the study
compares forecasting performance across
different time horizons. Results indicate that,
compared with standalone ARIMA and
LSTM models, the hybrid model
demonstrates superior stability and
adaptability in short-, medium-, and
long-term forecasting. Notably, in long-term
scenarios, the integration of multi-scale
features effectively mitigates error
accumulation, confirming the robustness of
the hybrid approach under complex market
conditions.
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1. Introduction
In recent years, hybrid models that combine
statistical time series modeling with deep
learning techniques-such as

ARIMA-LSTM-have attracted increasing
attention from researchers and have
demonstrated superior performance in financial
market forecasting.
Research on time series forecasting generally
falls into three categories: traditional statistical
approaches, machine learning methods, and
hybrid models that integrate both. Among these,
the Autoregressive Integrated Moving Average
(ARIMA) model is the most widely used in
financial forecasting due to its interpretability
and effectiveness in short-term predictions. Wu
Yuxia and Wen Xin (2016) applied the ARIMA
model to forecast stock prices in the ChiNext
market and found it to be effective in static
prediction tasks[4]. Similarly, Adebiyi et al.
(2014) investigated stock prices on the New
York Stock Exchange and the Nigerian Stock
Exchange using ARIMA and confirmed its
applicability for short-term forecasting[7].
However, as a linear model, ARIMA struggles to
capture the nonlinear characteristics inherent in
financial markets. To address this limitation,
researchers have attempted to combine ARIMA
with nonlinear models to improve forecasting
accuracy. For example, Lei Kewei and Chen
Ying (2007) employed an ARIMA-BP neural
network model to predict inbound tourist arrivals
in China, showing that the hybrid model
effectively integrated linear and nonlinear
information[3].
Deep learning methods have gained momentum
in the field of time series prediction over the past
few years, with long short-term memory (LSTM)
networks receiving particular attention for their
ability to capture both long-term and short-term
dependencies. Junran Wu et al. (2021)
transformed financial time series into graph
structures and integrated them with deep
learning techniques to forecast the CSI 300
Index, achieving promising results[11].
Additionally, Zhang Lei et al. (2021)
demonstrated that incorporating market
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sentiment indicators into LSTM models could
significantly enhance prediction accuracy in
exchange rate forecasting[5].
Nevertheless, standalone LSTM models also
have limitations, such as susceptibility to local
optima and sensitivity to parameter settings. To
combine the linear modeling strengths of
ARIMA with the nonlinear fitting capabilities of
LSTM, researchers have proposed hybrid
ARIMA-LSTM models. Building upon these
developments, this study introduces Variational
Mode Decomposition (VMD) into the existing
ARIMA-LSTM framework to construct an
ARIMA-VMD-LSTM composite model, aiming
to further enhance the accuracy and stability of
financial time series forecasting[1].

2.Model Construction

2.1ARIMAModel
The ARIMA (Auto Regressive Integrated
Moving Average) model is a classical time series
forecasting method proposed by Box and
Jenkins. The model combines three
components-Autoregression (AR), Integration (I)
through differencing, and Moving Average
(MA)-to model and predict time series data. The
ARIMA model is conventionally denoted as
ARIMA(p, d, q), where:
p: the order of the autoregressive part (AR),
representing the linear relationship between the
current value and its p lagged values
d: The number of difference steps (I) employed
in the process of transforming a non-stationary
series into a stationary one.
q: The order of the moving average part (MA) is
indicative of the linear relationship between the
current error and past forecast errors.
The general mathematical expression of the
ARIMAmodel is:

ϕ B 1−B dyt= θ B εt (1)
Where:
B is the lag operator, defined as Byt= y t−1
ϕ B = 1 − ϕ1B − ⋯ − ϕpBp is the autoregressive
polynomial
θ B = 1 + θ1B + ⋯ + θqBq is the moving
average polynomial
εt denotes the white noise series
The ARIMA model is constructed through the
following steps for the purpose of financial time
series forecasting:
Initially, the series is subjected to a stationarity
test using the Augmented Dickey-Fuller (ADF)

test. In the event of non-stationarity, the
application of differencing is employed to
ascertain the appropriate value of d.
Subsequently, the Autocorrelation Function
(ACF) and Partial Autocorrelation Function
(PACF) plots are utilized to preliminarily
identify suitable values for p and q. Thereafter,
the Akaike Information Criterion (AIC) is
employed to select the optimal order. The
estimation of model parameters is then
conducted through the utilization of the
Maximum Likelihood Estimation (MLE) method.
Finally, the residuals are subjected to the
Ljung-Box test to verify that they resemble
white noise. Once the model has passed these
checks, it can be used for forecasting.
However, the ARIMA model, while effective for
linear time series, struggles with the nonlinear
and volatile nature of financial data. It cannot
fully capture complex patterns such as regime
shifts and long-range dependencies, which are
common in financial markets. As a result, its
forecasting accuracy may decline in such
contexts.
To overcome these limitations, this study
integrates ARIMA with the Long Short-Term
Memory (LSTM) network, which is well-suited
for modeling nonlinear relationships and
temporal dependencies. The following section
details the construction of the LSTM model[6].

2.2 LSTMModel
The Long Short-Term Memory (LSTM) network
is a specialised form of Recurrent Neural
Network (RNN) proposed by Hochreiter and
Schmidhuber. It was designed to address the
vanishing or exploding gradient problems
encountered by traditional RNNs when
processing long sequences. In comparison with
standard RNNs, LSTM networks incorporate a
sophisticated gating mechanism that enables
them to effectively capture long-term
dependencies in time series data, thereby
demonstrating strong performance in financial
forecasting tasks[8].
The fundamental unit of LSTM is the memory
cell, which is comprised of three gating
mechanisms: the Forget Gate, the Input Gate,
and the Output Gate. The components function
collectively to determine which information is
retained or discarded.
The subsequent expression provides a formal
representation of the computations conducted by
the LSTM cell at time step t:
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The forget gate decides which information to
discard from the cell state:

ft= σ Wf⋅ ℎ t−1 , xt + bf (2)
In this equation, ft denotes the output of the
forget gate, whilst σ represents the sigmoid
activation function. The weight matrix and bias
term of the forget gate are denoted by Wf and
bf , respectively. The previous hidden state is
represented by ℎ t−1 , and xtdenotes the current
input.
The function of the input gate is to determine
which new information is added to the cell state:

it=σ Wi⋅ ℎ t−1 ,xt +bi (3)
C�t= tanh WC⋅ ℎ t−1 ,xt +bC (4)

Here, it controls the update level of each
component, and C�t represents the candidate cell
state.
The cell state is updated as follows:

Ct= ft C t−1 +it C�t (5)
Where denotes the Hadamard product
(element-wise multiplication), enabling selective
forgetting and addition of memory.
The output gate decides which parts of the cell
state are output:

ot= σ Wo⋅ ℎ t−1 , xt +bo (6)
ℎt=ot tanh Ct (7)

The output ℎtserves as the output of the current
time step and is passed to the next time step.

2.3 VMD Signal Decomposition
Variational Mode Decomposition (VMD) was
proposed by Dragomiretskiy and Zosso as a
novel adaptive signal processing method.
Compared with traditional Empirical Mode
Decomposition (EMD), VMD decomposes
signals by formulating and solving a variational
problem, supported by a solid mathematical
foundation. It effectively overcomes the issues
of mode mixing and end effects commonly seen
in EMD. In the context of financial time series
analysis, VMD has been demonstrated to
facilitate the decomposition of non-stationary
and nonlinear price sequences into a series of
relatively stationary Intrinsic Mode Functions
(IMFs). This approach has been shown to
provide more discriminative feature
representations for the subsequent forecasting
models. The following is a detailed description
of the decomposition process:
Set the number of mode components K and the
penalty parameter α, initialize each mode
component uk

1 t and its central frequency

ωk1 , and initialize the Lagrange multiplier λ1 t .
VMD obtains IMF components by solving the
following optimization problem:

min
uk , ωk k=1

K
∥∂t δ t + j

πt
∗ uk t e−jωkt∥2

2� (8)

Subject to the constraint: ∑ k=1 Kuk t = f t
The Alternating Direction Method of Multipliers
(ADMM) has been utilised for the purpose of
iterative optimization:
Update of mode components:

u�kn+1 ω =
f� ω − i≠k u�i ω� +λ

� ω
2

1+2α ω−ωk
n 2 (9)

Update of central frequency:

ωkn+1= 0
∞
ω∣u�k

n+1(ω)∣2dω�

0
∞
∣u�k

n+1(ω)∣2dω�
(10)

Update of Lagrange multiplier:
λ� n+1 ω = λ�n ω + τ f� ω − k=1

K ûk
n+1 ω� (11)

The iteration stops when the following condition
is met:

k=1

K
∥uk

n+1−uk
n∥2

2

∥uk
n∥2

2� <ϵ (12)

where ε is a preset convergence threshold.
The values of K and α play a critical role in the
quality of decomposition. The number of modes
K is typically chosen based on prior knowledge
of the signal’s frequency content or determined
empirically through spectral analysis.
Alternatively, a range of K values can be
evaluated using cross-validation to identify the
setting that yields the best reconstruction
performance or lowest forecasting error. The
penalty parameter α, which controls the
bandwidth of each mode, is similarly selected by
balancing mode smoothness and separation. A
larger α enforces narrower bandwidths, while a
smaller α allows more overlap. In practice, both
parameters can be tuned using grid search or
heuristic optimization methods to achieve
optimal decomposition results.
Through the above steps, the original signal is
adaptively decomposed into K relatively
stationary IMF components, which serve as
effective features for subsequent time series
modeling[9].

2.4 ARIMA-LSTMModel Construction
The hybrid ARIMA-VMD-LSTM prediction
model proposed in this study adopts a
three-stage
"decomposition–prediction–integration"
architecture. First, the original financial time
series is decomposed by VMD into several
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relatively stationary IMF components and a
residual term. Then, ARIMA models and LSTM
networks are used respectively to forecast
components with different characteristics.
Finally, the prediction results are reconstructed
through a nonlinear integration strategy. This
framework fully exploits the strengths of each
method: VMD provides high-quality signal
decomposition, ARIMA captures linear trends,
and LSTM models nonlinear relationships, thus
achieving complementary advantages[10].
The model is mathematically formulated as
follows:
ŷt= Fensemble FARIMA rt , FLSTM imfk k=1

K
(13)

where y�t is the predicted value at time t ,
ℱARIMA rt is the prediction result from the

ARIMA model applied to the residual
component, and ℱLSTM imfk denotes the
LSTM-based prediction for the k -th IMF
component.
K is the total number of IMF components
produced by VMD.
The integration function ℱensemble is
implemented as a weighted average of the
individual predictions, with weights empirically
assigned or optimized based on validation
performance. This aggregation strategy ensures
that each component contributes proportionally
to the final output according to its predictive
accuracy or importance.
The schematic diagram of the combined model
is presented below Figure 1:

Figure 1. Schematic Diagram of the ARIMA-LSTM Hybrid Model

3. Empirical Analysis

3.1 Experimental Data and Preprocessing
The present study has focused on the daily
closing prices of the CSI 300 Index as the
primary object of research. The historical data is
divided into three categories according to the
time frame over which it is predicted: short-term,
medium-term and long-term, corresponding to
time spans of 28, 68, and 126 trading days,
respectively. All intervals end on March 14,
2025, with the corresponding start dates being
February 5, 2025; December 2, 2024; and

September 2, 2024. For each interval, the
preceding three trading days are utilized to
assess the model's short-, medium-, and
long-term predictive efficacy, with the residual
portion constituting the test input.
To ensure the breadth and depth of training
samples, this study uses all available daily
closing prices of the CSI 300 Index from the first
trading day of 2010 up to the starting date of
each test period as the training dataset. All data
is sourced from the Wind database.
During preprocessing, missing values are first
imputed using a sliding window method to
ensure the continuity of the time series. Then,
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Min-Max normalization is applied to rescale the
data, improving the stability of model training.

3.2 Model Environment and Parameter
Settings
It is imperative to note that all models utilized in
this study are implemented using Python 3.13 in
the PyCharm development environment. The
development of deep learning components is
informed by the PyTorch framework. The
selection of the optimal order of the ARIMA
model is made for each prediction interval based
on the Akaike Information Criterion (AIC). This
determines the best-fitting (p, d, q) parameters to
capture linear patterns in the time series.
The LSTM model is designed following insights
from existing literature and empirical tuning. A
two-layer architecture is adopted, with each
hidden layer consisting of 128 neurons. Dropout
layers are inserted after each hidden layer to
prevent overfitting, with the dropout rate set to
0.2. The model training utilizes the Adam
optimizer, with a batch size of 64. The number
of training epochs is adjusted between 50 and
2000, depending on the data scale, with the
objective of ensuring adequate learning across
different prediction intervals.
To further enhance prediction performance,
Bayesian optimization is employed to fine-tune
the LSTM hyperparameters. Tuned parameters
include the number of layers, neurons per layer,
and dropout rate. The model structure is adjusted
within a reasonable range, while the dropout rate
is automatically selected via the optimization
algorithm to balance overfitting prevention with
learning capability.
The forecasting performance of the standalone

LSTM model and the integrated
ARIMA-VMD-LSTM model is compared under
different hyperparameter combinations. All
results presented are based on the models with
the best empirical fit.
In terms of input-output design, the standalone
LSTM model uses only the raw closing price
series as input. In contrast, the
ARIMA-VMD-LSTM hybrid model constructs a
multidimensional input consisting of the trend
component extracted by ARIMA and the
decomposed components obtained via VMD.
The output of the model is the predicted closing
prices for the next three consecutive trading days,
enabling joint modeling of both linear and
nonlinear features.

3.3 Evaluation Metrics
In order to provide an objective and reliable
assessment of the model's performance, this
study adopts several evaluation metrics from
different perspectives. These include Mean
Squared Error (MSE), Mean Absolute Error
(MAE), and Mean Absolute Percentage Error
(MAPE). The following mathematical
definitions have been established for these
metrics:

MSE= 1
N i=1

N yi−yi� 2� (14)

MAE= 1
N i=1

N yi−yi�� (15)

MAPE= 100\%
N i=1

N yi−yi�
yi

� (16)
Where the symbol N is used to denote the
number of samples, yi represents the actual
observed value at time i , and yi� is the
corresponding predicted value.
3.4 Experimental Results

Table 1. Error Metrics for Short-Term Prediction Models on the CSI 300 Index (Unit: %)
Forecast Horizon Model RMSE MAE MAPE

Short-term (28 days)
ARIMA 3.07 2.98 2.21
LSTM 2.54 2.36 1.91

ARIMA-VMD-LSTM 1.11 0.88 0.89
As shown in Table 1, the ARIMA-VMD-LSTM
hybrid model demonstrates superior
performance across all error metrics in the
short-term prediction task, significantly
outperforming the standalone ARIMA and
LSTM models in terms of forecasting accuracy.
Specifically, over the 28-day forecasting horizon,
the ARIMAmodel yields an RMSE of 3.07%, an
MAE of 2.98%, and a MAPE of 2.21%. The
LSTM model shows improved performance,
with all error metrics reduced and MAPE falling
to 1.91%, indicating its better capacity for

modeling nonlinear structures compared to
traditional statistical methods.
The ARIMA-VMD-LSTM model, which
incorporates VMD-based decomposition,
achieves the most remarkable results: the RMSE
drops to 1.11%, the MAE decreases to just
0.88%, and the MAPE is controlled within
0.89%. These results indicate that the integration
of linear and nonlinear components significantly
enhances the model’s generalization ability and
short-term forecasting accuracy.
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Table 2. Error Metrics for Medium-Term Prediction Models on the CSI 300 Index (Unit: %)
Forecast Horizon Model RMSE MAE MAPE

Medium-term (68 days)
ARIMA 8.27 7.51 4.94
LSTM 3.01 2.57 2.84

ARIMA-VMD-LSTM 3.59 3.06 3.20
As shown in Table 2, the performance
differences among models become more
pronounced in the medium-term forecast. The
standalone ARIMA model’s errors increase
significantly, with an RMSE of 8.27%, MAE of
7.51%, and MAPE rising to 4.94%, indicating
poor adaptability to price fluctuations over
longer time spans. In contrast, the LSTM model
demonstrates more stable performance, with
RMSE, MAE, and MAPE of 3.01%, 2.57%, and
2.84%, respectively, reflecting its advantage in
modeling medium-term trends.
Although the ARIMA-VMD-LSTM hybrid
model does not achieve the best results in the
medium-term forecast, it still delivers
competitive performance, with an RMSE of

3.59%, MAE of 3.06%, and MAPE of 3.20%.
While these metrics are slightly higher than
those of the LSTM model, they are significantly
better than those of the ARIMA model,
suggesting that the hybrid model benefits from
the complementary strengths of its components
and offers a balanced approach in handling
moderately complex market dynamics.
Overall, while the LSTM model shows the best
performance in the medium-term prediction, the
ARIMA-VMD-LSTM model's error metrics are
close, demonstrating its strong comprehensive
fitting ability and robustness, providing a
potential foundation for further improving
medium- and long-term forecasting accuracy.

Table 3. Error Metrics for Long-Term Prediction Models on the CSI 300 Index (Unit: %)
Forecast Horizon Model RMSE MAE MAPE

Long-term (126 days)
ARIMA 13.85 11.30 9.41
LSTM 3.79 3.67 4.15

ARIMA-VMD-LSTM 3.10 1.95 2.40
According to Table 3, the performance gap
among models widens further in the long-term
forecast. The ARIMA model’s prediction errors
increase substantially, with RMSE reaching
13.85%, MAE 11.30%, and MAPE 9.41%,
indicating its weak ability to model long-term
trends and difficulty in accurately capturing the
nonlinear volatility patterns of financial markets
over extended periods. By comparison, the
LSTM model maintains relatively stable
performance with RMSE of 3.79%, MAE of
3.67%, and MAPE controlled at 4.15%, showing
its advantage in handling long-term temporal
dependencies.
Notably, the ARIMA-VMD-LSTM hybrid model
continues to demonstrate strong adaptability in
long-term prediction, with RMSE reduced to
3.10%, MAE lowered to 1.95%, and MAPE only
2.40%, significantly outperforming the
individual models. This result indicates that by
incorporating VMD decomposition to effectively
extract signal components at different
frequencies, combined with ARIMA capturing
linear trends and LSTM modeling nonlinear
structures, the model can comprehensively
capture the long-term evolution characteristics of
the index, thereby substantially improving

forecasting accuracy.
Considering the results across the short-,
medium-, and long-term forecast horizons, the
ARIMA-VMD-LSTM hybrid model exhibits
strong robustness and generalization ability
across different time scales, with particularly
pronounced advantages in long-term forecasting.
These findings validate the practical value and
significance of multi-model fusion in financial
time series prediction.

4. Conclusion
This paper systematically investigates the
forecasting capability of the
ARIMA-VMD-LSTM nonlinear hybrid model
on the closing prices of the CSI 300 Index across
different time scales. By dividing historical data
into three representative forecasting intervals
and introducing Variational Mode
Decomposition (VMD) to enhance feature
extraction, the model combines the linear
modeling advantages of ARIMA with the
nonlinear fitting ability of LSTM to construct a
multi-level forecasting framework. Comparative
analyses with baseline models such as ARIMA
and LSTM were conducted.
The results show that the ARIMA-VMD-LSTM
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hybrid model is highly robust and capable of
generalization in the short-, medium- and
long-term forecasting of the CSI 300 Index. The
MAPE errors for the three forecast intervals are
0.89%, 3.20%, and 2.40%, respectively, all
significantly outperforming the single models,
reflecting the adaptive advantage of nonlinear
hybrid strategies in modeling complex time
series. Compared with the ARIMA model, the
hybrid model reduces errors substantially across
all forecast horizons, especially in long-term
prediction where the ARIMA model’s errors
increase sharply while the hybrid model
maintains high accuracy. Compared with the
LSTM model, the hybrid model achieves further
improved forecasting accuracy in both short- and
long-term predictions, indicating that VMD
decomposition enhances the deep model’s
capability to capture multi-scale information.
Moreover, as the forecast horizon lengthens, the
accuracy of single models, particularly ARIMA,
declines noticeably, whereas the hybrid model
demonstrates greater stability, highlighting its
advantage in handling financial market
non-stationarity and structural changes.
In summary, the ARIMA-VMD-LSTM hybrid
model shows promising generalization and
practical applicability in trend forecasting of the
CSI 300 Index. Beyond the CSI 300, this model
can be extended to predict other financial
products such as government bond futures and
cryptocurrencies, where high volatility and
complexity provide rich scenarios for model
validation and optimization, further expanding
its practical value across diverse financial
markets.
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