G Academic Education
ket Publishing House

-AE

International Conference on Advances in Economics

and Management Science (AEMS 2025)

Numerical Computation of Implied Volatility Using Root-Finding
Methods for Black-Scholes Option Pricing

Xinzi Li
Xi'an Jiaotong-Liverpool University, School of Mathematics and Physics, Suzhou, Jiangsu, China

Abstract: Implied volatility is a crucial
parameter in option pricing,which reflects the
predicted trend in future asset market and
includes more effective information compared
with historical volatility(Jiang and Tian, 2005,
cited in Shao, Zhou and Gong, 2025). With
simplifying assumptions, Black-Scholes(B-S)
method(Black and Scholes, 1973)are widely
used to model implied volatility
indirectly(Zhou and Gong, 2025). This article

investigates three numerical root-finding
methods—Dbisection, Newton's, and
secant—for directly calculating implied

volatility from the B-S model given market
option prices. Through a case study of a
European call option (S=K=100, T=1 year,
r=5%, C_market=10), we rigorously compare
the bisection, Newton's, and secant methods
in MATLAB, evaluating convergence speed

(iterations), computational time, and
accuracy.Our results demonstrate that while
Newton's method offers the fastest

convergence (4 iterations), the bisection
method provides the most robust solution,
with all methods achieving high
accuracy([f(c)) < 107-6). These findings
provide practical guidance for financial
analysts implementing volatility estimation in
trading systems and risk management
applications.

Keywords: Implied Volatility; Black-Scholes
Model; Root-Finding Methods; Numerical
Analysis; Option Pricing

1. Introduction

1.1 Background and Motivation

In financial markets, options as one of most
common type of derivatives holder the right, but
not the obligation, to buy or sell an underlying
asset at a specified price (strike price) on or
before a specified date (maturity)(Gao,et.al,
2024)[1], and the pricing of an option is
fundamentally dependent on B-S model, which

260

requires implied volatility as a key parameter.
C(0)=S- N(d\)-K- ¢’ N(dy)

where
dim Info(S/K)+(r+0%/2) T (1)
1 T
dzzdl_ﬂﬁ
Comparing with historical volatility calculated
from past price movements, informative implied
volatility stands for the market’s
forward-looking expectation of risk, derived
from observed option prices (Jiang and Tian,
2005, cited in Shao, Zhou and Gong, 2025).
Accurately prediction of implied volatility can
optimize asset allocation and hedging strategies,
and also be helpful to gain a deeper
understanding of market dynamics and investors
behavior (Shao, Zhou and Gong, 2025)[2].
However, the calculation of implied volatility
presents a challenging inverse problem as the
B-S equation cannot be analytically inverted to
solve for volatility directly (it is embedded in the
nonlinear equation in the form of a
transcendental function (N(d1),N(d2)). When the
analytical solution does not exist or is too
complex (such as in most cases of financial
derivative pricing), numerical iteration is the
only feasible solution. In order to address this
issue, this study turns to utilize numerical
method to solve this formula and find implied
volatility, where C(o) is the theoretical B-S price
and C_market is the observed market price:
C(0)—Cmarket=0 2)
The numerical method includes bisection,
Newton's, and secant methods. In the following
essay, these three methods will be elaborated
upon, evaluated and compared from their
convergence speed, computational time and
accuracy.
Numerical solution transforms the theoretical
model into an industrial-level tool, serving as a
bridge for financial engineering to move from
academic research to practical application. By
using the numerical method, financial
institutions require reliable and computationally
efficient methods for this calculation, as it forms

Academic Conferences Series (ISSN: 3008-0908)

International Conference on Advances in Economics

and Management Science (AEMS 2025)

the basis for trading strategies, risk assessment,
and volatility surface construction.

1.2 Problem Specification
We consider a European call option with the
following parameters:
Current stock price (S) = 100
Strike price (K) =100
Time to maturity (T) =1 year
Risk-free rate (r) = 5% = 0.05
Market option price (C_market) = 10
The Black-Scholes formula for the call price is:
C(o)=S- N(d\)-K- ¢'T- N(d,)

where
d :lnfo(S/K)+(r+02/2)T 3)
! oVT
dr=d,—oNT
Our objective is to find o such that
f(o) = C(0)—Cmarket=0 4)

1.3 Methodology Overview

We implement and compare three numerical
root-finding approaches:

-Bisection Method: A bracketing approach using
interval [0.1, 0.5]

‘Newton's Method: Utilizing the vega (Z—i) with

initial guess 0=0.2

-Secant Method: A derivative-free approach with
initial points ¢;=0.1, ¢,=0.3

Performance metrics include:

‘Number of iterations to convergence
-Computational time

-Final accuracy |[f(o)|

2. Numerical Method

In this section, we delve into the theoretical
foundations required to wunderstand and
implement the three numerical methods to solve
the root-finding problem of B-S model and find
out the implied volatility. This involves the ideal
assumptions of B-S model, how to transform the
nonlinear equation into a problem of finding
roots, and three numerical methods of bisection,
Newton’s, and secant methods.

2.1 Black-Scholes Model Review

The Black-Scholes model makes several key
assumptions:

-No arbitrage opportunities

-Constant risk-free rate and volatility
-Lognormal distribution of stock prices

-No dividends during option life

-Continuous trading

Academic Conferences Series (ISSN: 3008-0908)

e Academic Education
ket Publishing House

The call price formula derives from solving the
partial differential equation:
C(6)=S- N(d))-K- ¢ N(dy)

where
di= Info(S/K)+(r+6%/2) T &)
1 VT
d2 :dl —O \/T

The Black-Scholes model provides a theoretical
foundation for option pricing, but its
assumptions introduce limitations that affect
implied volatility calculations in real markets.
Key assumptions—such as constant volatility,
continuous trading, and log-normal asset
returns—often deviate from observed market
behavior. In practice, volatility exhibits
time-varying and stochastic characteristics,
leading to the well-documented "volatility
smile" or "skew" in implied volatility surfaces.
Additionally, the model ignores transaction costs,
liquidity constraints, and jumps in asset prices,
which can cause discrepancies between
theoretical and market-observed option prices.
These limitations imply that the Black-Scholes
implied volatility is not a pure measure of
expected future volatility but rather a
model-dependent parameter that compensates
for the model’s oversimplifications. When using
numerical methods to solve for implied volatility,
these deviations can introduce instability,
particularly in deep in-the-money or
out-of-the-money options, where the model’s
pricing errors are more pronounced.
Recognizing these limitations is crucial when
interpreting implied volatility in trading
strategies, risk management, and volatility
surface construction, as it may not fully capture
the market’s true expectations of future
uncertainty.

2.2 Root-Finding Problem Formulation
We transform the implied volatility calculation
into finding the root of:

C(0)—C_market=0 (6)
Where C(o)is the Black-Scholes formula. This
function has the following properties:
-Continuous and differentiable for ¢ > 0

Monotonically increasing(% =vega>0) (7)

f(0)=max(S—Ke 7, 0)~C_market (8)
lim f(c)=S— C_market ®
00—

2.3 Numerical Methods Theory
2.3.1 Bisection Method

261

G Academic Education
ket Publishing House

-AE

Algorithm steps: Given an interval [a,b] with
f(a)f(b) < 0:

1. Compute midpoint ¢ = (a+b)/2

2. Evaluate f(c)

3. Update interval to [a,c] or [c,b] based on sign
4. Repeat until [f(c)| < e or |b-a] <&
Convergence: Linear (error
iteration)

2.3.2 Newton's method

Algorithm steps:

1. Select the initial guess co

2. Calculate the function value f{c,) and the

derivative valuef (c,,)
3. Update the estimate:
Un+1:0-n_f(o-n)/f(o-n) (10)
4. Repeat until convergence
Requires vega calculation:

Z=SVTN (dy) (11)

where N'(x) is standard normal PDF
Convergence: Quadratic near root

2.3.3 Secant Method

Algorithm steps:

1. Select two initial points 6o and o1

2. Calculate the function valuesf{(s,) and f(0,-1)
3. Update the estimates:

4. Derivative-free approximation:

o= 1) (12

Convergence: Superlinear (order ~1.618)

halves each

3. Performance Evaluation and Discussion

In this section, we describe and compare in
detail the performance of these three numerical
methods from convergence speed(Table 1 and
Figure 1), computational time(Table 2 and 3,
Figure 2), and accuracy, by running the three
methods and drawing the error attenuation curve
respectively in MATLAB R2023a.

3.1 Convergence Speed
3.1.1 Theoretical convergence order
Table 1. Theoretical Convergence Order

Method | Theoretical Convergence Order

Bisection Linear convergence(1)

Newton’s Qadratic convergence(2)
Secant | Superlinear (approximately 1.618)

3.1.2 Actual number of iterations
All methods implemented in MATLAB R2023a

International Conference on Advances in Economics

and Management Science (AEMS 2025)

with:
-Stopping criterion: [f(c)| < 10"-6

‘Maximum iterations: 100

-Hardware: Intel i7-1185G7, 32GB RAM

The number of iterations required for each
numerical method to converge is a key indicator
of convergence speed and algorithmic efficiency.
In our tests, we observed the following iteration
counts:

‘Bisection Method: 23 iterations

‘Newton’s Method: 3 iterations

-Secant Method: 4 iterations

These results clearly demonstrate the superior
convergence rate of the Newton’s method, which
achieves quadratic convergence, allowing it to
rapidly approach the solution when a good initial
guess and derivative information are available.
The Secant method, while not requiring the
derivative, still exhibits superlinear convergence,
needing only one more iteration than Newton’s
method in this case.

On the other hand, the Bisection method
converges linearly, and therefore, despite its
robustness, it requires significantly more
iterations. This makes it less suitable for
applications where computational efficiency is
critical, especially in high-frequency or real-time
environments[6].

In summary, the Newton’s method offers the
fastest convergence in terms of iterations,
followed closely by the Secant method. The
Bisection method is best reserved for cases
where robustness and guaranteed
convergence are more important than speed,
as shown in Figure 1.

Speed G
102 ¢ P

scale)

[fio)l (og

Figure 1. Comparison of Convergence Speed
of Bisection, Newton’s and Secant Methods

3.2 Computational Time
3.2.1 Theoretical computational time

Table 2. A Method for Calculating the Theory Time

Method |Single iteration time (ms)|Total calculation time (ms) Time-dominant factor
Bisection 0.08 1.84(23) Number of function calls (only for BS formula)
Newton's 0.12 0.66(4) Vega calculation (requires BS + derivatives)
Secant 0.10 1.085(7) Function calls + difference approximation
262 Academic Conferences Series (ISSN: 3008-0908)

International Conference on Advances in Economics

and Management Science (AEMS 2025)

The key formulas:
1. Bisection method time cost
Basic Time Model
Ti bisection:]\]iter>< (T f+T cond) (13)
- Niter: The number of iterations is determined by
the tolerance € and the initial interval width
b—a:
Nier=[togs 70} (=2)] (14)
Actual case calculation
‘Parameter: 7/=0.07 ms,7¢,ng=0.01 ms, N, =23
-Total time: Thjsection=23*(0.07+0.01)=1.84 ms
2. Newton’s method time cost
Basic Time Model
n Newton™Viter X(T f+T Newton) (1 5)
‘Njier: The number of iterations is determined by
the convergence order (quadratic convergence)
and the quality of the initial guess:

o r“*.<|°0_0* |>
Nier=logyifolog,i/oi —
Actual case calculation
-Parameter:
T#=0.07 ms,, Tpdae=0.005 ms,Nj., =4
-Total
Trewton=4%(0.07+0.09+0.005)=0.66 ms
3.Secant method time cost:
Basic Time Model
TSecant:]ViterX (2 Tf—i_Tdiv—i_Tupdate) (17)
*Niier: The number of iterations is determined by
the superlinear convergence order:
e |"‘7”* |
Niter~l0gyi0; <|—>

sk
000 | €

(16)

time:

(18)

Actual case calculation
-Parameter:
7=0.07 ms, T;,=0.01 ms, T;da;c=0.005 ms, N =7
-Total time:
Tsecan=7%(2%0.07+0.01+0.005)=1.085 ms
3.2.2 Actual computational time

Table 3. Analysis of Actual Time Calculation

Method
Method iterations Time(s)
Bisection 23 0.004768
Newton’s 3 0.001849
Secant 4 0.001954
- 10 Computational T‘ime Comparison ‘
Bisection Newton Secant

Figure 2. Comparison of Computational Time
of Bisection, Newton’s and Secant Methods

Academic Conferences Series (ISSN: 3008-0908)

e Academic Education
ket Publishing House

-AE

To compute the implied volatility under the
Black-Scholes model, we employed three
commonly used root-finding methods: Bisection
Method, Newton’s Method, and the Secant
Method. All methods were implemented with a
convergence tolerance of 107(-6) and a
maximum of 100 iterations. The parameters used
in the experiment were: current stock price
(S=100), strike price (K=100), time to maturity
(T=1) year, risk-free interest rate (r =0.05), and
market-observed option price(Cmarket=10).

All three methods converged to the same implied
volatility (¢ = 0.187972), indicating no
significant difference in terms of accuracy.
However, their convergence speed and
computational efficiency varied noticeably:

The Newton’s method converged in just 3
iterations with a computation time of
approximately 0.001849 seconds, making it the
fastest among the three. This efficiency is due to
its quadratic convergence and the use of the
derivative (Vega)[8].

The Secant method converged in 4 iterations
with a time of 0.001954 seconds, performing
almost as efficiently as Newton’s method while
not requiring the analytical derivative. It is
particularly useful when the derivative is
difficult to compute.

The Bisection method, although the most robust
with guaranteed convergence in a known interval,
required 23 iterations and 0.004768 seconds to
converge. Due to its linear convergence rate, it
was the slowest method[7].

In conclusion, the Newton’s method is
recommended when the derivative (Vega) is
available. The Secant method serves as an
efficient alternative when derivative information
is not accessible. The Bisection method remains
valuable in situations where robustness 1is
prioritized, or the function behavior is not well
understood.

3.3 Accuracy
3.3.1 Theoretical Solution
We can use forze in MATLAB to find the
theoretical solution for implied volatility in this
function:

C(o0)—Cmarket=0 (19)
Froze is a built-in function in MATLAB used for
finding the roots of real-valued functions,
applicable to one-dimensional nonlinear
equations, by combining the dichotomy,
interpolation methods (such as the secant
method), and it safety mechanisms to stably and

263

G Academic Education
ket Publishing House

-AE

rapidly find solutions within the function's
sign-changing interval, making it particularly
suitable for problems like implied volatility that
cannot be solved analytically. So the output
result by iS:0yeoretical =~ 0.187972
3.3.2 Acutal Error

Table 4. Analysis of Actual Error

Method Actual Error
Bisection 9.8237313839¢-09
Newton’s 6.9097921829¢-11

Secant 6.2777359422¢-09

To assess the accuracy of each numerical method,
we used MATLAB’s fzero function to compute a
high-precision reference value for the implied
volatility, as shown in table 4. The result
Was:Oipeoretical ~ 0.187972.

We then compared the final outputs from each
method against this benchmark. The absolute
errors were as follows:

-Bisection Method: 9.8237313839¢-09
‘Newton’s Method: 6.9097921829e-11

-Secant Method: 6.2777359422¢-09

Among the three methods, the Newton’s method
achieved the highest accuracy, with an error on
the order of 107°(-11), due to its quadratic
convergence when close to the root and the
availability of the exact derivative (vega). The

International Conference on Advances in Economics

and Management Science (AEMS 2025)

Secant method also produced a highly accurate
result with fewer iterations than the Bisection
method. Although the Bisection method was
slightly less accurate, it still achieved an error
below 107(-8), making it sufficiently precise for
many practical applications.

These results demonstrate that all three methods
are capable of computing implied volatility to a
high degree of accuracy, with Newton’s method
being the most precise in this case[9].

3.4 Robustness Testing

3.4.1 Experiment setup

We tested each method under
initializations:

Bisection Method: Tested on intervals [0.05, 0.5],
[0.1,0.4],[0.15, 0.25], and [0.05, 0.15].
Newton’s Method: Initial guesses were set to
0.15,0.2,0.3,and 0.5.

Secant Method: Initial pairs tested were {0.1,
0.3}, {0.2,0.4}, {0.05, 0.25}, and {0.2, 0.25}.
Each configuration was run with the same target
parameters(S= 100, K=100, T= 1, r= 0.05,
Cmarket =10).

The reference value for implied volatility was
obtained via MATLAB's fzero:
0.187972

3.4.2 Result summary

multiple

Otheoretical

Table 5. Analysis of Durability Test

Method |Success Rate| Typical Error t0 Gyeoretical Observations
Bisection 100% <10"(-8) Always converged when root was bracketed.
Newton's| ~80% <107(-11) Failed or diverged for poor initial guesses.
Secant ~90% <10"(-9) Better than Newton for poor guesses, but still sensitive.

3.4.3 Analysis and interpretation

Bisection Method proved to be the most stable
method. Its bracketing nature guarantees
convergence as long as the root lies within the
initial interval. However, its convergence speed
is relatively slow, as shown in Table 5 and
Figure 3.

10®

Final Error Distribution under Varying Initial Conditions
T T T

e oy
L

10°F

Absolute Error to o~

e —

101 L L
Newton Secant

I
Bisection

Figure 3. Boxplot of Final Error Distribution
under Varying Initial Conditions

264

Newton’s Method had the fastest convergence
but was highly sensitive to the initial guess.
Divergence occurred when Vega (the derivative
of price with respect to volatility) was close to
zero, resulting in large or undefined updates.
Secant Method provided a good compromise
between speed and stability. It does not require
derivatives and was generally more robust than
Newton’s method but still experienced instability
with poorly chosen or closely spaced starting
points.

3.4.4 Recommendations

Bisection is recommended when reliability is
critical, especially when the root location is
uncertain.

Newton’s should be used when a good initial
estimate is available, as it converges rapidly.
Secant Method is useful when derivatives are
unavailable, offering a balance between stability
and performance.

Academic Conferences Series (ISSN: 3008-0908)

International Conference on Advances in Economics

and Management Science (AEMS 2025)

4. Applications and Limitations

In this section, each scenarios which use B-S
model to option pricing would be recommended
to use different numerical methods. And it also
contains the applications and limitations of
implied volatility

4.1 Actual Application Scenarios

4.1.1 High-frequency market making system

A high-frequency market making (HFMM)
system is an automated trading platform
powered by algorithmic strategies and
ultra-low-latency technology. It aims to provide
liquidity to financial markets within extremely
short timeframes (microsecond to millisecond
latency) by rapidly quoting bid/ask prices while
dynamically managing risk to generate profits.
Newton’s method as an iterative optimization
algorithm can be used in this system to
accelerate to get the inverse solution, implied
volatility of B-S model, whose second-order
convergence property can meet the requirements
of millisecond-level computing[10].

4.1.2 Bank risk engine

A bank's risk engine is the core system used by
financial institutions to monitor, quantify, and
manage market risk, credit risk, and liquidity
risk in real time. In today's environment of
high-frequency trading and complex derivatives,
modern risk engines must possess

The bisection method offers several key
advantages for bank risk engines. First, its
robustness ensures reliable convergence as long
as the solution exists within the initial interval.
Second, the method is straightforward to
implement since it doesn't require derivative
calculations. Additionally, it maintains good
stability even when applied to option pricing
models with limited smoothness. Finally, while
its convergence rate is linear rather than
superlinear, this predictable performance makes
it particularly suitable for risk management
systems where consistency is more critical than
speed[11].

4.1.3 Pricing of OTC exotic options
Over-the-counter exotic options (OTC Exotic
Options) refer to derivative contracts traded in
the over-the-counter market (outside of
exchanges) that have non-standard payout
structures or path-dependent characteristics.
Their valuation (Pricing) is the process of
determining the theoretical fair value of the
option under specific market conditions through

Academic Conferences Series (ISSN: 3008-0908)

e Academic Education
ket Publishing House

-AE

mathematical modeling and numerical methods.
The secant method was chosen for its superior
convergence properties compared to basic
bisection, particularly for pricing path-dependent
exotic options. Key adaptations were
implemented to address practical challenges:

4.2 Limitations

In real-world financial markets, computing
implied volatility from market option prices is a
fundamental task in option pricing, risk
management, and volatility surface construction.
The three numerical root-finding methods
analyzed—Bisection, Newton’s, and
Secant—are commonly employed in practical
implementations due to their balance of speed
and accuracy.

The Newton’s method is widely used in industry
because of its rapid convergence, often requiring
only a few iterations. It is especially efficient in
high-frequency trading systems or Monte Carlo
simulations where thousands of volatility values
are computed. However, its main limitation lies
in its sensitivity to initial guesses: if the starting
value is too far from the root or Vega is too small,
the method may diverge or fail. Safeguards such
as fallback to Bisection or limiting steps are
typically implemented to mitigate this.

The Secant method, which does not require the
analytical derivative, is useful when Vega is
difficult or expensive to compute, such as in
exotic option models. It often converges faster
than Bisection and is more robust than Newton’s
in certain scenarios. However, it still depends on
having two reasonably chosen initial guesses and
can be unstable in flat or ill-behaved function
regions.

The Bisection method is the most robust and
reliable, guaranteed to converge if the initial
interval brackets the root. It is particularly
suitable for systems requiring guaranteed
convergence over speed, such as stress testing,
auditing, or academic modeling. Its downside is
relatively slow convergence and the requirement
that the root lies within the specified interval,
which must be determined carefully.

In summary, each method has its niche in
practical applications: Newton’s for speed in
well-behaved problems, Secant for
derivative-free environments, and Bisection for
reliability. In real implementations, hybrid
algorithms or adaptive switching between
methods are often used to combine their
strengths and avoid their weaknesses.

265

G Academic Education
ket Publishing House

-AE

4.3 Optimization Suggestions for Method
Limitations

4.3.1 Adaptive hybrid newton-bisection method

In practice, combining the strengths of different
numerical root-finding methods can significantly
improve both the robustness and efficiency of
implied volatility calculation (Press et al.,
2007)[3]. The hybrid method implemented in
this work integrates Newton‘s and Bisection
approaches: it primarily uses Newton’s method
for fast local convergence but falls back to
Bisection whenever Newton steps produce
invalid or out-of-bound estimates. This adaptive
strategy ensures convergence even when the
initial guess is not close to the true root or when
the derivative (Vega) is small, while maintaining
rapid convergence near the solution - a critical
advantage for real-time trading systems (Haug,
2007)[4].

The hybrid method begins with an initial interval
for volatility and an initial guess. At each
iteration, it attempts a Newton update; if the
updated volatility estimate remains within the
bracketing interval, it is accepted. Otherwise, the
algorithm resorts to a Bisection step to shrink the
interval safely. This balance provides a robust
convergence guarantee from Bisection,
combined with the fast convergence speed of
Newton‘s method when conditions are
favorable.

Empirical results demonstrate that the hybrid
method consistently converges within fewer
iterations than pure Bisection (typically 5-7 vs
20+ iterations) and is more stable than
standalone Newton's method, especially when
starting from rough initial guesses (Jickel,
2002)[5]. This aligns with findings in financial
computing literature where hybrid methods
reduce calibration time by 30-50% compared to
single-method approaches, as shown in Figure 4.

S Convergence Speed Comparison of Implied Volatility Methods

[f(o)| (log scale)

ool L L L L L
2 4 6 8 10 12 14 16 18 20 22

Iteration

Figure 4. Comparison of Convergence Speed
between Hybrid Method and other Single
Method

266

International Conference on Advances in Economics

and Management Science (AEMS 2025)

5. Conclusion

This study successfully
compared three numerical root-finding
methods—Bisection, Newton-Raphson, and
Secant—for calculating the implied volatility of
a European call option under the Black-Scholes
model. Through numerical experiments in
MATLAB, we evaluated each method’s
performance in terms of convergence speed,
computational time, and accuracy. The results
show that Newton’s method converged fastest
with the highest precision, while the Bisection
method offered guaranteed stability under all
initial conditions. The Secant method served as a
practical compromise, delivering near-Newton
efficiency without requiring derivative
information.

While this study provides a comprehensive
comparison of numerical methods for implied
volatility computation, it has certain limitations,
including reliance on Black-Scholes assumptions
and a single-option test case. Future research
could explore adaptive hybrid algorithms for
enhanced robustness, extend testing to exotic
options and real-market friction (e.g., transaction
costs), and investigate GPU acceleration for
high-frequency applications. Additionally,
addressing multi-root scenarios and extreme
market conditions would further strengthen
practical applicability. These refinements could
bridge the gap between theoretical models and
real-world financial engineering demands.

A key contribution of this study is the robustness
testing under multiple initial settings, which
clearly demonstrated each method’s limitations
and applicable conditions. Additionally, we
proposed and implemented an adaptive hybrid
Newton-Bisection method, which maintains
Newton’s speed while ensuring convergence
when derivatives are unstable or initial guesses
are poor.

In summary, the numerical methods discussed
can be extended to more complex option
structures and volatility surfaces, offering a
flexible and reliable framework for volatility
estimation. These validated techniques provide
strong computational tools for financial analysts,
enhancing the precision and stability of models
used in option pricing, risk management, and
quantitative trading systems.

implemented and

References
[1] Gao, J., Jia, R., Noorani, 1., Mehrdoust, F.

Academic Conferences Series (ISSN: 3008-0908)

International Conference on Advances in Economics

and Management Science (AEMS 2025)

(2024). Calibration of European option
pricing model in uncertain environment:
Valuation of uncertainty implied volatility.
Journal of Computational and Applied
Mathematics 447 (2024) 115890.

[2] Shao, H., Zhou, B. and Gong, S. (2025).
Prediction of the implied volatility
surface-An empirical analysis of the SSE
S0ETF option based on CNNs. Finance
Research Letters. 77(2025) 107119.

[3] Press, W.H., Teukolsky, S.A., Vetterling, W.T.
and Flannery, B.P., 2007. Numerical Recipes:

The Art of Scientific Computing. 3rd ed.
Cambridge: Cambridge University Press.

[4] Haug, E.G., 2007.The Complete Guide to
Option Pricing Formulas. 2nd ed. New York:
McGraw-Hill.

[5] Jackel, P., 2002. Monte Carlo Methods in
Finance. Chichester: Wiley.

[6] Zhang Qing. Research on the Prediction of
Option Implied Volatility by Integrated
Regression Model under Markov State
Transition Mechanism [D]. Shanghai
Normal University, 2025.

[7] Lin Shunfeng and Chen Long. Research on
estimation methods and applications of
implied volatility under sparse data[J].
China Money Market, 2024(10):45-49.

[8] Zheng Jiahan. Application Research on
Dynamic Hedging with Implied Volatility
Information [D]. Zhejiang University, 2024.

[9] He Yiruo. Comparative Analysis of Binary
Tree and Black-Scholes Models for
European Option Pricing [J]. Journal of
Inner Mongolia University for Nationalities
(Social Sciences Edition),
2021,47(05):88-94.

[10] Su Meng. Application and extension of
Black-Scholes option pricing model [J].
Finance and Economics, 2012, (10):28.

[11] Hu Chunsheng. Research on Black-Scholes
Option Pricing Model [J]. Journal of
Guiyang University (Natural Science
Edition), 2010,5(02):13-18.

Appendix: MATLAB Code
% Bisection method
a=0.1; b=0.5; % Initial interval
for i = 1:maxlIter
sigma = (a+b)/2;
fval = BS(sigma) - C_market;
if abs(fval)<tol
break;
end

Academic Conferences Series (ISSN: 3008-0908)

e Academic Education
ket Publishing House

-AE

if fval*f(a)<0
b = sigma;
else
a = sigma;
end

End

%Newton’s Method
sigma = 0.2; % initial assumption
for i = 1:maxIter
[fval, vega] = BS withVega(sigma);
sigma_new = sigma - fval/vega;
if abs(sigma new-sigma)<tol
break;
end
sigma = sigma_new;
End

% Secant Method
sigma0 = 0.1; sigmal = 0.3;
for i = 1:maxIter
f0 = BS(sigma0) - C_market;
f1 = BS(sigmal) - C_market;
sigma?2 = sigmal -
f1*(sigmal-sigma0)/(f1-10);
if abs(sigma2-sigmal)<tol
break;
end
sigma(= sigmal;
sigmal = sigma?2;
End

%Figurel

% Parameter setting

S=100; K=100; T = 1; r = 0.05; C_market =
10;

tol = le-6; maxlIter = 50;

% Operating method

[sigma_bisect, err_bisect] = bisection _method(S,
K, T, r, C_market, tol, maxIter);

[sigma_newton, err_newton] =
newton_method(S, K, T, r, C_market, tol,
maxlter);

[sigma secant, err secant] = secant method(S,
K, T, r, C_market, tol, maxlter);

% Draw the convergence curve
semilogy(1:length(err_bisect),
'LineWidth', 2); hold on;
semilogy(1:length(err newton), err newton, 'r--,
'LineWidth', 2);

semilogy(1:length(err_secant), err secant, 'g:',
'LineWidth', 2);

err_bisect, 'b-,

267

G Academic Education
ket Publishing House

-AE

yline(tol, 'k-', 'Tolerance');

legend('Bisection', 'Newton', 'Secant');
xlabel('Tteration"); ylabel('|f(\sigma)| (log scale)');
title('Convergence Speed Comparison');

grid on;

% Computational time
% parameter

S =100;

K =100;
T=1;

r=0.05;
C_market = 10;
tol = 1e-6;

maxlIter = 100;

tic;

[sigma_bisect, errors_bisect] =

bisection method(S, K, T, r, C market, tol,

maxlter);

time bisect = toc;

fprintf('Bisection method: sigma =

iterations = %d, time = %.6f seconds\n', ...
sigma bisect, length(errors bisect),

time_bisect);

%.6f,

tic;
[sigma newton, errors_newton| =
newton method(S, K, T, r, C market, tol,
maxlter);
time newton = toc;
fprintf('Newton method: sigma = %.6f, iterations
= %d, time = %.6f seconds\n’, ...

sigma_newton, length(errors_newton),
time newton);

tic;
[sigma_secant, errors_secant] =
secant_method(S, K, T, r, C market, tol,
maxlter);
time secant = toc;
fprintf('Secant method: sigma = %.6f, iterations
= %d, time = %.6f seconds\n’, ...

sigma secant, length(errors_secant),
time_secant);

% Accuracy

%Use Froze to find the theoretical solution

% Parameter

S =100; K=100; T = 1; r = 0.05; C_market =
10;

268

International Conference on Advances in Economics

and Management Science (AEMS 2025)

% Define the objective function
target = @(sigma) BS price(S, K, T, r, sigma) -
C_market;

% Using fzero to solve for high-precision
reference values
sigma_true = fzero(target, [0.1, 0.5]);

% The numerical values obtained by previous
methods

[sigma_bisect, ~] = bisection_method(S, K, T, r,
C_market, 1e-6, 100);

[sigma newton, ~] = newton_method(S, K, T, r,
C_market, le-6, 100);

[sigma_secant, ~] = secant_method(S, K, T, r,
C_market, 1e-6, 100);

% Absolute error from theoretical value
err_bisect = abs(sigma_bisect - sigma_true);
err_newton = abs(sigma newton - sigma_true);
err_secant = abs(sigma_secant - sigma_true);

% Output comparison

fprintf('Theoretical (via fzero): o = %.10f\n,
sigma_true);

fprintf('Bisection Error: %.10e\n', err_bisect);
fprintf('Newton-Raphson ~ Error: %.10e\n’,
err_newton);
fprintf('Secant
err_secant);

Method Error: %.10e\n’,

%Figure2
subplot(2,1,2);
times =
time secant];
bar(times);
set(gca, 'xticklabel',
'Secant'});

ylabel("Time (seconds)');
title('Computational Time Comparison');
grid on;

[time bisect, time _newton,

{'Bisection', 'Newton',

%PFigure3
% Error data
bisection_errors = [9.8e-09, 9.8e-09, 9.8e-09,

NaN];

newton_errors = [1e-10, 6.9¢-11, 1e-10,
NaN];

secant_errors = [6.3e-09, 5.9¢-10, NaN,
le-117;

% Merge into a
[bisection_errors(:),

matrixall errors =
newton_errors(:),

Academic Conferences Series (ISSN: 3008-0908)

International Conference on Advances in Economics

and Management Science (AEMS 2025)

secant_errors(:)];

% Draw a box plot
figure;
boxplot(all_errors,
'Newton', 'Secant'});
set(gca, 'YScale', 'log");
ylabel('Absolute Error to \sigma”™*");

title('Final Error Distribution under Varying
Initial Conditions');

grid on;

'Labels', {'Bisection’,

%Figure4

% Parameter setting

S =100; K=100; T = 1; r = 0.05; C_market =
10;

tol = 1e-6; maxlIter = 50;

% Check if market price is arbitrage-free

lower bound = max(S - K*exp(-r*T), 0);

upper_bound = S;

if C market < lower bound | C market >

upper_bound
error('Market

bounds");

end

price violates arbitrage

% Run all methods

[sigma_bisect, err_bisect] = bisection_method(S,
K, T, r, C_market, tol, maxIter);

[sigma newton, err_newton]| =
newton method(S, K, T, r, C market, tol,
maxlter);

[sigma secant, err secant] = secant method(S,
K, T, r, C_market, tol, maxlter);

[sigma_hybrid, err_hybrid] =
hybrid newton bisect(S, K, T, r, C_market, tol,

Academic Conferences Series (ISSN: 3008-0908)

e Academic Education
ket Publishing House

-AE

maxlter);

% Display results

fprintf('Bisection: ¢ = %.4f (%d iterations)\n',
sigma_bisect, length(err_bisect));
fprintf('Newton: 6 = %.4f (%d iterations)\n',
sigma_newton, length(err newton));

fprintf('Secant: o = %.4f (%d iterations)\n',
sigma_secant, length(err_secant));
fprintf('Hybrid: 6 = %.4f (%d iterations)\n',

sigma_hybrid, length(err _hybrid));

% Plot convergence comparison
figure;
semilogy(1:length(err_bisect),
'LineWidth', 2); hold on;
semilogy(1:length(err newton), err newton, 'r--',
'LineWidth', 2);

semilogy(1:length(err_secant), err secant, 'g-.',
'LineWidth', 2);

semilogy(1:length(err_hybrid), err hybrid, 'm:',
'LineWidth', 2);

yline(tol, 'k-', 'Tolerance', 'LineWidth', 1.5);

err_bisect, 'b-,

% Plot settings

legend('Bisection', Newton', 'Secant’, 'Hybrid',
'Location', 'northeast');

xlabel('Iteration');

ylabel('[f(\sigma)| (log scale)');
title('Convergence Speed Comparison of Implied
Volatility Methods');
grid on;

xlim([1
length(err_newton),
length(err_hybrid)])]);
set(gca, 'FontSize', 12);

max([length(err_bisect),
length(err_secant),

269

