

### Research Progress in Agricultural Pest and Disease Diagnosis Technology based on UAV Remote Sensing

### Zipan Zhang

Yantai University, Trier Institute of Technology for Sustainable Development, Yantai, Shandong, China

Abstract: Crops are an important economic product in my country and an indispensable part of our daily life. Different crops such as wheat, cotton, and soybeans play their own important values. As the environment continues to change, various pests that endanger the healthy growth of crops emerge in an endless stream. The traditional technical means used by field workers to control pests and diseases on large-scale crops are inefficient and time-consuming. In recent years, with the in-depth research and development of science and technology, drone remote sensing technology has been widely used in the fields, greatly facilitating the work and making workers traditional agriculture further develop towards smart agriculture. This paper summarizes the research progress of agricultural pest and disease identification technology based on drone remote sensing, mainly focusing on drone remote sensing technical means, algorithm models, and data sharing. Drone remote sensing identification of agricultural pests and diseases usually use a variety of means such as hyperspectral technical cameras, multispectral cameras, thermal infrared imaging, visible light imaging, and lidar. Then, the practical application of machine learning models and deep learning models in identifying pests and diseases is described in detail, and the combination of artificial intelligence and Internet of Thingsenhanced systems in drone AI remote sensing agricultural data sharing is explored in the end. By analyzing existing studies, this paper summarizes the advantages and disadvantages of applying UAV remote sensing to agricultural pest and disease identification, and proposes innovative ideas, aiming to provide reference subsequent development of this field.

Keywords: UAV Remote Sensing;

Agricultural Pest Identification; Algorithm Model; Data Sharing

#### 1. Introduction

With the continuous growth of global population and the intensification of climate change, food security issues are becoming more and more serious. As a key factor affecting agricultural production, the monitoring and prevention of crop pests and diseases have become extremely important, because efficient and accurate pest and disease diagnosis technology can not only reduce the use of pesticides and reduce environmental pollution, but also improve crop yield and quality, thereby ensuring food security. Traditional pest and disease identification methods mostly rely on manual inspections for identification, which are inefficient, subjective, and difficult to achieve large-scale monitoring, and cannot meet the requirements of modern agriculture for efficiency and accuracy. In recent years, with the continuous advancement of remote sensing technology, UAV remote sensing, as an efficient, sensitive and high-resolution spatial big data collection tool, has shown great application potential in the identification of agricultural pests and diseases. UAV remote sensing can quickly obtain farmland images and data, and combine with advanced technical means and algorithm models to achieve accurate identification and dynamic monitoring of pests and diseases, providing strong support for the scientific prevention and control of agricultural pests and diseases. The IoT-enhanced systems integrate sensor and drone data to monitor crop growth in farmland in real time, and performs extensive data processing and rapid information transmission, thereby further implementing precision agriculture. With the rapid development of artificial intelligence and big data technology, the application potential of UAV remote sensing in pest and disease diagnosis has been further explored, laying a solid foundation for intelligent agricultural



management and sustainable development.

### 2. UAV Remote Sensing Technology

### 2.1 Hyperspectral Camera

Hyperspectral cameras can provide details of crop spectral characteristics by obtaining information from hundreds or thousands of continuous and narrow spectral bands. For the identification of agricultural pests and diseases, hyperspectral cameras can capture the tiny spectral changes of crop leaves caused by pests and diseases. For example, after crops are damaged by pests and diseases, the chlorophyll content and water conditions have changed, and these changes are reflected in the changes in the

## **International Conference on Frontier Science and Sustainable Social Development (ICFSSD2025)**

reflectivity of specific bands on hyperspectral image. Using hyperspectral data analysis, spectral features related to pests and diseases such as absorption peaks or reflection peaks in specific bands can be extracted to achieve the purpose of early identification and classification diseases. of pests and Hyperspectral cameras can accurately distinguish each wavelength and perform preventive detection on different parts of different crops. As shown in Table 1, summarizing the main crop parts measured by hyperspectral cameras at different wavelengths ranging from 300 to 14,000 nm, the typical crops targeted, and the applicable application areas.

Table 1. Crops and Application Areas Measured by Hyperspectral Cameras in Different Bands

| Table 1. Crops  | s and Application | 1 Areas Measured by I    | Hyperspectra | l Cameras in Different Bands  |  |
|-----------------|-------------------|--------------------------|--------------|-------------------------------|--|
|                 | Specific          | Measured crop section    | Typical crop | Application area              |  |
|                 | wavelength (nm)   |                          |              |                               |  |
| UV band         | 300~400           | Leaf epidermis, fruit    | _            | ①Detection of early infection |  |
|                 |                   | wax layer                | Apples,      | of pests and diseases         |  |
|                 |                   |                          | Citrus       | ②Fruit ripeness               |  |
| Blue light      | 450~495           | Leaf blade chlorophyll   | Wheat, Rice, | ①Assessment of                |  |
| (visible light) |                   | a, stomatal distribution | Maize        | photosynthetic efficiency     |  |
|                 |                   |                          |              | ②Diagnosis of hydrogen        |  |
|                 |                   |                          |              | deficiency                    |  |
| Green light     | 500~570           | Canopy structure,        | Potatoes,    | ①Estimation of vegetation     |  |
| (visible light) |                   | 0                        | Cotton,      | cover                         |  |
|                 |                   | senescence               | Sugarcane    | ②Crop senescence monitoring   |  |
| Red light       | 620~700           | Leaf blade chlorophyll   | Spinach,     | ①Vegetation index NDVI        |  |
| (visible light) |                   | b, photosynthetically    | lettuce, Tea | calculation                   |  |
|                 |                   | active zone              | tree         | ②Yield prediction             |  |
| Near infrared   | 700~1300          | Internal canopy          | Maize,       | ①Water stress detection       |  |
| (NIR)           |                   | structure, cell wall     | Sorghum,     | ②Biomass estimation           |  |
|                 |                   |                          | Forage grass |                               |  |
| Short-wave      | 1300~2500         |                          | Cotton,      | ①Dry early stress detection   |  |
| infrared        |                   |                          | Potato,      | ②Harvest maturity grading     |  |
| (SWIR)          |                   |                          | Dragon fruit |                               |  |
| 1               | 8000~14000        |                          |              | ①Irrigation needs             |  |
| Infrared (TIR)  |                   |                          | Greenhouse   | ②Disease/thermal anomaly      |  |
|                 |                   | •                        | crops        | warning                       |  |
| ★Fluorescence   | 685–740           |                          | Corn,        | ①real-time monitoring of      |  |
| band            |                   | photosynthesis           | Tomato, Blue | photosynthesis efficiency     |  |
|                 |                   | _                        | plum         | ②Photo-inhibition diagnosis   |  |
|                 |                   | signal                   |              |                               |  |

#### 2.2 Multispectral Camera

Multispectral cameras can simultaneously collect spectral information of several specific frequency bands, including red light, green light, blue light, and near-infrared light. These bands are closely related to the growth status and

health status of crops. In the process of identifying agricultural pests and diseases, multispectral cameras are often used to calculate various vegetation indicators, such as the Normalized Difference (Digital image grayscale calibration) Vegetation Index (NDVI). The occurrence of pests and diseases will cause



damage to crop leaves and reduce photosynthesis, thereby causing a decrease in the NDVI value<sup>[1]</sup>. It is calculated using

Normalised Difference Vegetation Index (NDVI) calculation formula in formula (1)[2], where Ref<sub>target</sub> represents the target reflectivity, that is, the electromagnetic waves reflected by the irradiated light from the leaves of crops and other parts, DNtarget represents the digital quantization value of the target, which is the value of the pixel corresponding to the part of the crop that reflects the electromagnetic wave in the imaging system, and DN<sub>dark</sub> represents the dark pixel. Digital quantization value is usually the pixel value output by the imaging system under no light input or extremely low light conditions, that is, it can detect the growth of crops even under low light conditions. DN<sub>white</sub> represents the digital quantization value of the white reference object, that is, the value of the corresponding pixel of the white standard reference object in the imaging system, which can measure the value of the crop part under extremely high exposure or high light reflection. represents the white reference reflectance, which is generally the reflectance of the white standard reference object with high reflectance. By monitoring the trend of NDVI changes, it can indirectly reflect the occurrence and development of pests and diseases. Multispectral cameras can also be combined with other vegetation indicators, such as leaf area index (LAI) and vegetation coverage, to further improve the recognition accuracy of pests and diseases.

Normalised Difference Vegetation Index (NDVI) calculation formula:

$$Ref_{target} = \frac{DN_{target} - DN_{dark}}{DN_{white} - DN_{dart}} * Ref_{white} (1)$$

Crops reflect different health conditions due to their types, growth stages and environmental backgrounds, and the NDVI values

calculated based on the index displayed by the multispectral camera are also different.

Generally speaking: NDVI>0.6: vegetation is healthy and photosynthesis is significant

NDVI 0.3~0.6: There may be mild stress or growth transition period

NDVI < 0.3: Vegetation is severely damaged, possibly affected by pests or drought

#### 2.3 Thermal Infrared Imaging

Thermal infrared imaging technology can reflect the physiological state and the occurrence of pests and diseases by capturing the thermal radiation information on the surface of crops. When crops are damaged by pests and diseases, their physiological activities change, causing abnormal changes in surface temperature. Figure 1 shows a bird's-eye view of a drone using thermal infrared imaging technology to scan the growth status of crops in farmland. For example, pest and disease infection can cause metabolic disorders in local crop tissues and cause the temperature in the area to rise or fall. Thermal infrared imaging can monitor the temperature distribution on the surface of crops in real time, and determine the location and range of pest and disease occurrence by analyzing the temperature abnormality area<sup>[3]</sup>. Figure 2 specifically shows the drone presenting different levels of thermal infrared images of the scanned area. Compared with visible light and multispectral imaging, thermal infrared imaging is less affected by lighting conditions and can be used for monitoring at night or in low-light environments.



Figure 1. Drone Thermal Infrared Imaging Technology for Agricultural Field Overview

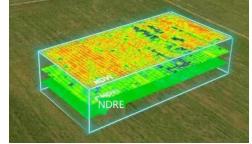


Figure 2. Different Levels of Thermal Infrared Imaging

### 2.4 Visible Light Imaging

Visible light imaging can intuitively show the appearance characteristics of crops by collecting color images of farmland through drones carrying visible light cameras. In terms of agricultural pest and disease identification, visible light imaging can observe the symptoms of pests and diseases such as color changes, spots, curling and wilting of crop leaves. The type and distribution range of pests and diseases



can be preliminarily determined by analyzing visible light images. However, the ability of visible light imaging to identify some early or hidden pests and diseases is limited, and it needs to be combined with other technical means to improve its recognition accuracy.

2.5 LiDAR

LiDAR can obtain high-precision three-dimensional structural information<sup>[4]</sup> of the crop canopy by emitting laser pulses and measuring the return time of the reflected light. In the field of agricultural pest identification, LiDAR can provide information on crop plant height, canopy density and leaf distribution, and leaf distribution information is closely related to the

health of crops. When crops are attacked by pests and diseases, they will grow abnormally, such as the height of the plants decreasing and the canopy becoming sparse. These changes can be detected through the three-dimensional data obtained by LiDAR. Table 2 summarises the working principles of lidar, the information it provides, its relationship with crop health, pest and disease detection methods, and data fusion capabilities. LiDAR also has the ability to fuse data with other sensors, such as spectral data, which helps to further improve the accuracy and stability of pest and disease detection. Table 3 summarises the performance of five different sensors under different weather conditions.

Table 2. Functions of LiDAR in Agricultural Pest Identification

| Function                                                                                         | describe                                                                   |  |  |  |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|
| How it works                                                                                     | Emit laser pulses, measure the return time of reflected light, and obtain  |  |  |  |
| HOW IT WOLKS                                                                                     | high-precision three-dimensional structural information of crop canopies   |  |  |  |
| Information provided                                                                             | Crop height, canopy density, and leaf distribution information             |  |  |  |
| Relationship to crop health Leaf distribution information is closely related to crop health      |                                                                            |  |  |  |
| Pest and disease detection Detect abnormal growth caused by pests and diseases, such as plant he |                                                                            |  |  |  |
| methods                                                                                          | loss and sparse crowns, through 3D data                                    |  |  |  |
| Data fusion comphility                                                                           | Data fusion can be performed with other sensors (such as spectral data) to |  |  |  |
| Data fusion capability                                                                           | improve the accuracy and stability of pest and disease detection           |  |  |  |

Table 3. Working Status of Different Sensor Types under Different Weather Conditions

| weather         | Sunny (no                    | Cloudy/overcast                         | Rainy             | Foggy                      | Strong wind        |
|-----------------|------------------------------|-----------------------------------------|-------------------|----------------------------|--------------------|
| conditions      | clouds/few                   |                                         | weather/light     | weather/light fog          |                    |
| Sensor type     | clouds)                      |                                         | rain              |                            |                    |
| Hyperspectral   | Optimal                      | Available but limited                   | Extremely poor    | Not available              | Difficult to       |
| camera          | condition                    | <ol> <li>Insufficient light</li> </ol>  | results           | 1. Water                   | operate            |
|                 | 1. High signal-to-           | causes a decrease in 1. Raindrops vapou |                   | vapour/aerosols            | 1. Drone shaking   |
|                 | noise ratio, rich            | signal-to-noise ratio.                  | severely obstruct | strongly absorb            | causes blurred     |
|                 | spectral details             | 2. Spectral resolution                  | and scatter the   | and scatter specific       | images/difficult   |
|                 | 2. Accurate                  | and recognition                         | spectral signal.  | wavelengths.               | stitching          |
|                 | identification of            | accuracy decrease.                      | 2. Water on the   | <ol><li>Spectral</li></ol> | 2. May affect      |
|                 | subtle spectral              | 3. Partial diagnostic                   | lens affects      | information is             | imaging stability  |
|                 | characteristics              | analysis is still                       | imaging.          | severely distorted.        | 3. Diagnostic      |
|                 |                              | possible.                               | 3. High flight    | 3. Penetration             | accuracy           |
|                 |                              |                                         | safety risk.      | ability is weak.           | decreases          |
| Multispectral   | Excellent                    | Good results                            | Extremely poor    | Restricted                 | Difficult to       |
| camera          | condition                    | 1. More robust to                       | results           | 1. Fog scattering          | operate            |
|                 | <ol> <li>Adequate</li> </ol> | changes in light                        | 1. Raindrops      | affects the visible        | 1. Drone shaking   |
|                 | sunlight, accurate           | intensity than                          | severely obstruct | light to near-             | causes blurred     |
|                 | calculation of               | hyperspectral sensors                   | and scatter the   | infrared                   | images/difficultie |
|                 | vegetation                   | 2. Commonly used                        | spectral signal.  | wavelength range.          | s in stitching     |
|                 | indices (NDVI,               | vegetation indices                      | 2. Water on the   | 2. Image blurring          | 2. Affects spatial |
|                 | NDRE, etc.)                  | still provide a good                    | lens affects      | and reduced                | analysis accuracy  |
|                 | 2. Effective                 | reflection of crop                      | imaging.          | contrast.                  |                    |
|                 | monitoring of                | conditions                              | 3. High flight    | 3. Decreased               |                    |
|                 | stressed areas and           |                                         | safety risk.      | accuracy of                |                    |
|                 | changes in health            | optical sensor for                      |                   | vegetation indices.        |                    |
|                 |                              | cloudy days                             |                   |                            |                    |
| Thermal imaging | Excellent                    | Basically unusable                      | Not available     | Seriously restricted       |                    |
|                 | condition                    | 1. Clouds emit                          | 1. Rain           | 1. Fog/water               | difficulties       |



|               | 1. Accurate       | thermal radiation,               |                               | vapour absorbs and           |                    |
|---------------|-------------------|----------------------------------|-------------------------------|------------------------------|--------------------|
|               | surface           | which strongly                   | alters leaf                   | emits thermal                | accelerates leaf   |
|               | temperature       | interferes with                  | temperature                   | radiation,                   | transpiration/heat |
|               | information       | ground signals.                  | 2. Water on the               | interfering with             | dissipation,       |
|               | 2. Effective      | 2. Data is severely              | lens affects                  | temperature                  | which may          |
|               | detection of      | distorted or there is            | temperature                   | measurement.                 | temporarily alter  |
|               | abnormal canopy   | no valid data.                   | measurement                   | 2. The surface               | canopy             |
|               | temperatures (hot |                                  | <ol><li>High flight</li></ol> | temperature                  | temperature.       |
|               | spots) caused by  |                                  | safety risk                   | information                  | 2. Drone shaking   |
|               | pests, diseases,  |                                  |                               | obtained is                  | affects image      |
|               | and water stress  |                                  |                               | unreliable.                  | stability and      |
|               |                   |                                  |                               |                              | temperature        |
|               |                   |                                  |                               |                              | measurement        |
|               |                   |                                  |                               |                              | accuracy.          |
| Visible light | Optimal           | Good results                     | Poor results                  | Seriously restricted         | Difficult to       |
| imaging       | condition         | 1. Even lighting, no             | 1. Water on the               | 1. Blurred images,           | operate            |
|               | 1. High           | strong shadows                   | lens causes                   | reduced contrast             | 1. Drone shaking   |
|               | resolution and    | 2. Colours are                   | blurring and                  | <ol><li>Difficulty</li></ol> | may cause blurry   |
|               | clarity           | slightly faded but               | glare.                        | identifying distant          | images.            |
|               | 2. True colour    | details are well                 | 2. Increased                  | targets                      | 2. Motion          |
|               | reproduction      | preserved                        | image noise and               |                              | artefacts may      |
|               |                   |                                  | loss of detail.               |                              | occur.             |
| laser radar   | Excellent         | Excellent condition              | Seriously                     | Limited but usable           | Operational        |
|               | condition         | <ol> <li>Active light</li> </ol> | restricted                    | 1. Fog/aerosols              | difficulties       |
|               | 1. High point     | source, unaffected by            | <ol> <li>Raindrops</li> </ol> | scatter lasers,              | 1. Strong winds    |
|               | cloud quality and | lighting conditions              | reflect/scatter               | attenuate signal             | cause crops to     |
|               | accurate          | 2. Strong ability to             | laser pulses,                 | strength, reduce             | sway violently,    |
|               | structural        | penetrate thin clouds            | generating a                  | point cloud density          |                    |
|               | information       | 3. Stable point cloud            | large number of               | and effective                | 'blurred' point    |
|               | 2. Effective      | quality and reliable             | noise points.                 | detection distance.          | clouds.            |
|               | analysis of       | structural information           | 2. Weak ability               | 2. However, some             | 2. Affects the     |
|               | changes in        |                                  | to penetrate                  | structural                   | measurement        |
|               | canopy structure  |                                  | raindrops,                    | information can              | accuracy of        |
|               | (height, density, |                                  | resulting in few              | still be obtained.           | canopy structure   |
|               | gaps) (possible   |                                  | effective echoes.             |                              | parameters (such   |
|               | impact of pests   |                                  | 3. High flight                |                              | as height and gap  |
|               | and diseases)     |                                  | safety risk.                  |                              | rate).             |
|               |                   |                                  | <b>. </b>                     | of multiple deci             |                    |

### 3. UAV Remote Sensing Algorithm Model

#### 3.1 Machine Learning Model

Machine learning models have an important impact on the identification of agricultural pests and diseases by UAV remote sensing. Common machine learning algorithms include decision trees, clustering, Bayesian classification, random forests, support vector machines, and k-nearest neighbor algorithms. These algorithms extract and analyze spectral features, texture features, and color features from remote sensing data to build pest and disease identification models. For example, the decision tree algorithm can divide the data according to different feature thresholds and gradually construct decision rules to achieve the purpose of pest and disease identification<sup>[5]</sup>. The random forest algorithm makes the model more stable and accurate based on the

construction of multiple decision trees and ensemble learning. The calculation method of the support vector machine is to complete data classification by finding the best hyperplane. It shows excellent processing performance for both high-dimensional data and small sample data. In the process of establishing a machine learning model, remote sensing data needs to go through a series of preprocessing steps, including format adjustment, data cleaning, data splicing and correction, etc. Figure 3 shows the four main parts of the machine learning model for unmanned aerial vehicle remote sensing technology: common algorithms, feature extraction and analysis, model construction, and remote sensing data pre-processing, which are integrated into a general framework. Table 4 compares the characteristics of five commonly used types of algorithms: decision trees, clustering, Bayesian classification, random

forests, and support vector machines.

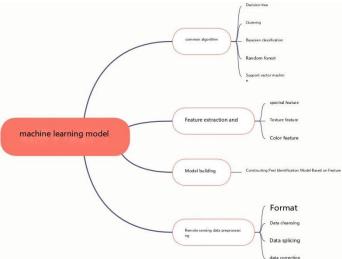


Figure 3. Main Components of a Machine Learning Model Table 4. Different Characteristics of Five Common Algorithms

| Features               | Decision Tree   | Clustering   | Bayesian       | Random         | Support Vector       |
|------------------------|-----------------|--------------|----------------|----------------|----------------------|
|                        |                 | (K-Means)    | Classification | Forest         | Machine              |
|                        |                 |              | (Naive)        |                |                      |
| Type                   | Supervised      | Unsupervise  | Supervised     | Supervised     | Supervised learning  |
|                        | learning        | d learning   | learning       | learning       |                      |
| Work objectives        | Data            | Data point   | Probability    | High-          | Find the optimal     |
|                        | segmentation    | grouping     | prediction     | precision      | surface to maximize  |
|                        |                 |              | categories     | classification | the boundary         |
|                        |                 |              |                | /regression    |                      |
| Training speed         | Fast            | Fast         | Very fast      | Slower         | Slow                 |
| Predicted speed        | Fast            | Fast         | Very fast      | Moderate       | Fast                 |
| Missing value handling | Possible        | Difficult    | Possible       | Possible       | Difficult            |
| Feature correlation    | Not sensitive   | Sensitive    | Uncertain      | Not sensitive  | Sensitive            |
| processing             |                 |              | (assumed       |                |                      |
|                        |                 |              | independent)   |                |                      |
| Capturing nonlinear    | Possible        | Possible     | Limited        | Strong         | Strong               |
| relationships          |                 |              |                |                |                      |
| Key advantages         | Simple and      | Unsupervise  | Fast           | High           | Strong nonlinear     |
|                        | fast            | d learning   | prediction     | accuracy       | boundaries           |
| Key disadvantages      | Easy to overfit | Sensitive    | Feature        | Slow to        | Slow to train,       |
|                        |                 | parameters/  | independence   | train          | difficult to adjust  |
|                        |                 | distribution | assumption     |                | parameters, requires |
|                        |                 |              | does not hold  |                | preprocessing        |

### 3.2 Deep Learning Model

With the rapid growth of data, the rapid improvement of algorithms and the continuous improvement and maturity of algorithms, deep learning models have been widely used in the identification of agricultural pests by drone remote sensing. Deep learning models have strong feature learning and expression capabilities and can automatically mine deep features from massive remote sensing data. Commonly used models in deep learning include

convolutional neural networks (CNN), recurrent neural networks (RNN) and their various versions. CNN has excellent image classification and target detection performance. It extracts local and global features from images through convolution and pooling with remote sensing images to achieve the purpose of accurately identifying pests and diseases<sup>[6]</sup>. The RNN method is particularly suitable for processing continuous data, such as time series remote sensing images, which can capture the dynamic changes of pests and diseases over time.



### 4. Drone AI Remote Sensing Enables Agricultural Data Sharing

### 4.1 Artificial Intelligence

Artificial intelligence technology is the core of UAV AI remote sensing agricultural data sharing. Artificial intelligence algorithms intelligently analyze and process the massive remote sensing data collected by UAVs and extract data of great value. For example, natural language processing technology can be used to mine text from pest and disease reports and related literature to obtain knowledge on the types, patterns and prevention methods of pest and disease occurrence. At the same time, artificial intelligence can also automatically label and classify data to improve data processing efficiency<sup>[7]</sup>. In data sharing, artificial intelligence can build an intelligent data platform to uniformly manage and share data, use data mining and knowledge discovery technology to mine shared data, discover the patterns and patterns therein, and provide decision support for the identification and prevention of agricultural pests and diseases.

IoT-enhanced systems are the infrastructure and technical support for drone AI remote sensing to share agricultural data. By deploying a variety of IoT sensors in farmland, such as meteorological sensors, soil moisture sensors, and crop growth is possible to sensors. it capture environmental conditions of farmland and crop growth data in real time. These data combined with drone remote sensing data can provide a more comprehensive understanding of the true conditions of farmland, thereby improving the accuracy of pest and disease identification<sup>[8]</sup>. Figure 4 illustrates the five specific process segments of unmanned aerial vehicle (UAV) remote sensing IoT-enhanced systems: data collection, data transmission, data processing and analysis, data sharing and application, and feedback and optimisation. These segments are implemented to achieve precise agricultural information processing and form a closed-loop connection. Through IoT-enhanced systems, data can be transmitted and shared remotely, which enables the information collected by drones and sensors to be uploaded to the cloud in real time, providing convenient access and use agricultural researchers, management, farmers.

### **4.2 Internet of Things-Enhanced Systems**

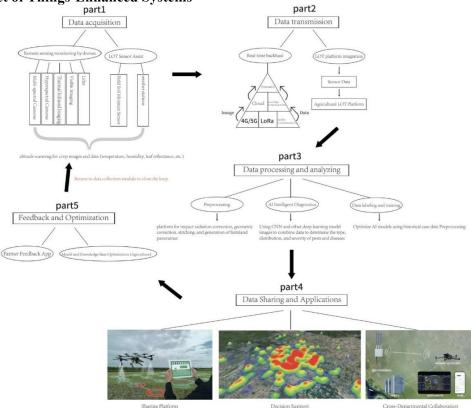


Figure 4. Process of Realizing Agricultural Data Sharing using Drone Remote Sensing IoT-Enhanced Systems



### **5.** Advantages and Disadvantages of Current UAV Remote Sensing Research

### **5.1 Advantages**

UAV remote sensing has many advantages for the identification of agricultural pests and diseases. First, UAVs have high imaging capabilities. UAVs have strong imaging capabilities and can obtain centimeter-level to sub-meter-level images. They can clearly observe subtle changes in crops and help to detect pests and diseases early [9]. Second, UAVs are flexible and responsive. They can be quickly deployed to designated areas and complete largescale farmland data collection in a short period of time, which meets the timeliness requirements of pest and disease monitoring. UAV remote sensing technology can be equipped with a variety of sensors, such as hyperspectral cameras, multispectral cameras, and thermal infrared imaging. These sensors can capture rich surface data and provide all-round data support for the identification of pests and diseases.

#### 5.2 Disadvantages

However, UAV remote sensing also has shortcomings in identifying agricultural pests and diseases. On the one hand, the endurance of UAVs is limited. Most UAVs have a flight time of only about 1-2 hours, which limits their ability to conduct continuous monitoring in large areas. On the other hand, complex weather conditions such as strong winds and rainfall will affect the flight stability of UAVs and the quality of data collection. The processing and analysis of UAV remote sensing data is very complex, especially multi-spectral, hyperspectral and lidar data, which require the support of professional technology and software<sup>[10]</sup>. The current standards and specifications for UAV remote sensing identification of pests and diseases are not yet sound, and the data processing methods and results of various research teams and units will also be different, which will affect the comparability and sharing of data.

### 6. Improvement Methods

In order to further enhance the role of UAV remote sensing in identifying agricultural pests and diseases, the following innovative ideas can be proposed. First, research and develop UAV technology with long endurance, such as using hydrogen fuel cells and solar-powered UAVs to

## International Conference on Frontier Science and Sustainable Social Development (ICFSSD2025)

extend the flight cycle of UAVs and expand their monitoring range. Second, increase the research efforts on multi-sensor collaborative technology, deeply integrate optical, lidar, thermal infrared and other multi-sensor data to improve the accuracy and reliability of pest and disease identification<sup>[11]</sup>. Unified standards specifications for UAV remote sensing agricultural pest and disease identification have also been formulated, and data processing and analysis methods have been standardized to facilitate data sharing and exchange. At the same time, blockchain technology is combined to ensure data security and reliability, transparent sharing and traceability. Finally, strengthen cooperation with agricultural research institutions, universities and enterprises to conduct interdisciplinary research and combine UAV remote sensing technology to study agricultural biology and ecology knowledge, and gain a deep understanding of the occurrence mechanism and propagation law of pests and diseases.

#### 7. Conclusion

The application of UAV remote sensing in agricultural pest identification has broad prospects, and research on technical means, algorithm models and data sharing continues to advance. Hyperspectral cameras, multispectral cameras, thermal infrared imaging, visible light imaging and lidar technology provide a large number of data sources for pest identification; machine learning models are combined with deep learning models to improve the accuracy and efficiency of pest identification; artificial intelligence, Internet of Things + and other technologies promote agricultural data sharing and intelligent application. However, there are still certain defects in the application of UAV remote sensing, which needs further research and improvement. The method of developing long-endurance UAVs, strengthening multisensor collaboration, formulating unified standards and strengthening interdisciplinary cooperation is proposed, which is expected to promote the in-depth development of UAV remote sensing in agricultural pest identification.

#### References

[1] Li Xuguang. Research on the application of UAV remote sensing technology in agricultural pest monitoring[J]. Hebei Agricultural Machinery, 2024(2):42-44.



- [2] Gu Zexin, Wang Baijuan, Su Wenping, et al. Application of hyperspectral UAV remote sensing image recognition technology in tea garden pest control [J]. Economist, 2020, (12): 61-62.
- [3] Zhao Shengli, Mujahid Hussain, Wang Guobin, et al. Research progress of crop growth monitoring based on UAV remote sensing[J]. Jiangsu Agricultural Science, 2024, 52(8):8-15.
- [4] Peng Xiaomeng, Li Simeng, Zhao Lixiang. Promotion and application of agricultural drone plant protection technology in corn disease and insect pest control[J]. Agricultural Science and Technology, 2025(4):148-150.
- [5] Li Zhaodong. Exploration on the application of remote sensing images and UAV technology in forest pest control[J]. Modern Agricultural Machinery, 2023(2):124-126.
- [6] Wang Zhiye. Research on wheat growth parameter estimation based on UAV multispectral remote sensing and machine learning[D]. Henan University of Finance

- and Economics, 2024.
- [7] Cui Meina. Dynamic monitoring of cotton mite pests based on UAV remote sensing[D]. Shihezi University, 2019.
- [8] Cao Yingli, Zhang Hongze, Guo Fuxu, et al. Research progress of crop disease monitoring based on UAV remote sensing[J]. Journal of Shenyang Agricultural University, 2024, 55(05): 616-628.
- [9] Li Wei. Application of UAV remote sensing technology in forestry resource survey and pest control[J]. China Agricultural Abstracts-Agricultural Engineering, 2019, 31(05):45-46+60.
- [10] Liu Yuhang. Application of UAV remote sensing technology in agricultural pest monitoring[J]. Hebei Agricultural Machinery, 2025, (04): 21-23.
- [11] Cui Kai. Exploration of the application of UAV remote sensing technology in crop disease and insect pest monitoring[J]. Agricultural Science and Technology Innovation, 2025, (07): 26-28.