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Abstract: Electric power load forecasting is a
crucial link in ensuring the safe, stable, and
economical operation of power systems and
achieving sustainable resource allocation.
This paper reviews the research status and
development trends of electric power load
forecasting, classifying it into three categories
based on time span: short-term,
medium-term, and long-term, suitable for
daily grid dispatch, monthly/quarterly
operational planning, and long-term planning,
respectively. Regarding influencing factors,
external meteorological conditions and
economic policies, as well as internal user
behavior patterns and power system dynamic
characteristics, all significantly impact load
forecasting. Traditional statistical methods
such as time series analysis, regression
analysis, and exponential smoothing once
dominated but are limited by model
assumptions and their ability to handle
nonlinear relationships. Machine learning
methods like Support Vector Machines (SVM)
and Random Forests (RF) overcome
traditional limitations through feature
interaction and data fusion capabilities. Deep
learning methods such as Convolutional
Neural Networks (CNN), Transformers, and
Graph Neural Networks (GNN) further
enable high-dimensional modeling of complex
spatiotemporal patterns, driving prediction
accuracy to new heights. Future research
directions focus on cross-domain
collaborative forecasting, breaking
disciplinary barriers to build multimodal
fusion networks, and responding to carbon
neutrality goals by developing net load
forecasting models adapted to new power
system demands and prediction models
coupled with carbon credit mechanisms. In
summary, power load forecasting technology
is shifting from traditional approaches
towards multidisciplinary integrated
innovation and will become the core engine
for intelligent decision-making in new power

systems, aiding the safe, economical, and
low-carbon transformation of the grid.
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1. Introduction

1.1 Research Background and Significance
With the rapid development of the social
economy and the continuous improvement of
living standards, the importance of power
systems in modern social development has
become increasingly prominent. As a key link in
power system planning, operation, and control,
power load forecasting is of paramount
importance for ensuring the safe, stable, and
economical operation of power systems.
Accurate electric power load forecasting
provides a scientific basis for various aspects
such as power generation scheduling,
transmission network planning, distribution
system optimization, and electricity market
trading. This effectively reduces the operational
costs of power systems, improves power supply
reliability and service quality, and also
contributes to the rational allocation and
sustainable development of power resources.
Electric power load forecasting is a complex and
variable subject, influenced by multiple
interacting factors, including economic
development levels, industrial structure
adjustments, population growth and mobility,
meteorological condition changes, social activity
events, and energy policy adjustments. These
factors intertwine and interact, endowing power
loads with complex characteristics such as
nonlinearity, time-variance, and uncertainty,
posing significant challenges to load forecasting
work. To address this challenge, numerous
scholars and researchers have conducted
extensive and in-depth research in the field of
power load forecasting, proposing various
forecasting methods and technologies, and
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continuously exploring new forecasting ideas
and models[1].

1.2 Classification of Electric Power Load
Forecasting
Electric power load forecasting can be classified
based on different time dimensions. According
to the time span, it is mainly divided into
short-term, medium-term, and long-term electric
power load forecasting.
1.2.1 Short-Term Electric Power Load
Forecasting
Short-term power load forecasting usually
includes hourly power load forecasting and daily
power load forecasting. It is primarily used to
guide the daily dispatch and operation of the grid,
helping dispatchers arrange generation plans
reasonably, optimize unit output, and ensure the
grid meets load demand while achieving
economical and stable operation. In short-term
forecasting, time series analysis methods like the
ARIMA model and machine learning methods
like neural networks are widely used. These
methods can fully utilize temporal patterns and
complex features in historical load data to
provide strong support for short-term load
forecasting.
1.2.2 Medium-Term Electric Power Load
Forecasting
Medium-term electric power load forecasting
focuses on load trends over several weeks to
several months. It is mainly used for
monthly/quarterly operational planning of the
grid, macroscopic generation planning, and also
serves as an important reference for electricity
market trading, helping market participants
formulate reasonable trading strategies in
advance. During medium-term forecasting,
methods like time series analysis and regression
analysis are typically combined, considering the
influence of seasonal factors, economic
indicators, temperature change trends, and other
multifaceted factors to build comprehensive
predictive models.
1.2.3 Long-Term Electric Power Load
Forecasting
Long-term electric power load forecasting
focuses on the development trend of power loads
over several years to decades or even longer. Its
main application scenarios include long-term
grid planning, such as the construction and
renovation of transmission and transformation
facilities, power plant siting, etc. It also provides
a basis for formulating energy policies to ensure

the long-term stability and sustainability of
power supply. Long-term forecasting generally
analyzes long-term growth trends based on
historical load data, combined with
macroeconomic factors such as economic
development plans, population growth forecasts,
and industrial restructuring, using methods like
regression analysis and trend extrapolation for
comprehensive prediction.
This paper will review existing research
achievements in electric power load forecasting
from the perspectives of influencing factors,
types of forecasting methods, and future research
directions, and provide some outlook and
predictions for future research.

2. Influencing Factors of Electric Power Load
Forecasting

2.1 External Factors
2.1.1 Meteorological Conditions
Meteorological conditions are the core driver of
short-term load fluctuations. Temperature, as the
dominant factor[2], exhibits a nonlinear
relationship with electricity demand – extreme
high or low temperatures trigger surges in
cooling/heating loads, forming seasonal peak
loads. Meanwhile, parameters like humidity,
wind speed, and sunshine indirectly affect
electricity usage behavior (e.g., increased air
conditioning energy consumption in high
humidity) by altering perceived temperature.
Disastrous weather events (e.g., typhoons,
blizzards) can cause cliff-like load drops or
emergency power usage surges, requiring
targeted modeling. Meteorological modeling
often couples numerical weather prediction data
and introduces HDD/CDD indices to quantify
cumulative temperature effects. (Heating Degree
Days / Cooling Degree Days)
2.1.2 Economic Policies
Economic and policy factors dominate long-term
load trends and structural changes.
Macroeconomic fluctuations (e.g., GDP growth
rate, industrial prosperity) directly determine the
scale of industrial and commercial electricity
consumption. Electricity price reforms reshape
daily load curve patterns by changing user
preferences through time-of-use pricing
strategies. Industrial policies (e.g., production
restrictions on energy-intensive enterprises) or
sudden public events (e.g., pandemic lockdowns)
can disrupt historical load patterns, causing
short-term drastic changes or long-term
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transformations in regional energy consumption
models[3].Economic policy factors rely on
dynamic dummy variables (policy effective flags,
holiday variables) or external feature vectors
(e.g., electricity price volatility, PMI index) for
quantitative characterization.

2.2 Internal Factors
2.2.1 User Behavior Patterns
User behavior patterns shape the micro-level
fluctuations of the load. Residential electricity
consumption exhibits a typical dual-peak
characteristic (morning and evening peaks),
deeply influenced by lifestyle habits (e.g.,
commuting times, household appliance usage
patterns) and the proliferation of new
energy-consuming devices (e.g., concentrated
charging of electric vehicles, smart home device
cycling). Industrial and commercial loads are
strongly correlated with production cycles – shift
systems in manufacturing create stable daytime
load plateaus, while business operating hours
and promotions cause pulse-like fluctuations in
nighttime loads. User response behaviors to
price signals (e.g., participation in demand
response programs) further increase the
complexity of the load curve.
2.2.2 Power System Dynamic Characteristics
Power system dynamic characteristics define the
physical boundaries of load evolution. Grid
topology (e.g., regional interconnection strength)
influences the spatial distribution of load and
transmission losses. Equipment operating status
(e.g., transformer aging, line capacity limits)
may indirectly alter measurable load values
through supply capacity constraints. System
security control strategies (e.g., under-frequency
load shedding, voltage regulation) actively shed
part of the load under extreme operating
conditions, causing deviations between
measured data and actual demand.

3. Types of Electric Power Load Forecasting
Methods

3.1 Traditional Statistical Methods
Traditional statistical methods build
mathematical models based on the statistical
patterns of historical load data. They are
characterized by theoretical rigor and strong
interpretability and dominated early load
forecasting.
3.1.1 Time Series Analysis
Short-term power load forecasting usually

includes hourly power load forecasting and daily
power load forecasting.Short-term power load
forecasting commonly employs the time series
model method.Time series models forecast by
mining temporal dependencies in load data. The
classic Autoregressive Integrated Moving
Average (ARIMA) model uses differencing to
handle non-stationary series, combining
Autoregressive (AR) and Moving Average (MA)
terms to capture short-term correlations. Its
extension, Seasonal ARIMA (SARIMA), further
introduces seasonal differencing to effectively
depict daily/weekly/annual cyclical fluctuations
in load. These methods rely on stationarity
assumptions and have limited adaptability to
abrupt load changes (e.g., holiday peaks), often
requiring combined outlier correction
strategies.Literature[4]proposes an enhanced time
series analysis method based on wavelet
transform for power load forecasting, using
lifting wavelet transform to extract key features
from user power load data, avoiding interference
from randomness and volatility in electricity
consumption data.
3.1.2 Regression Analysis
Regression analysis focuses on quantifying the
causal relationship between external factors and
load. Multiple Linear Regression (MLR)
achieves prediction by fitting linear relationships
between covariates (e.g., meteorology, economy)
and load. To enhance nonlinear fitting capability,
piecewise regression (e.g., introducing
temperature thresholds) or Generalized Additive
Models (GAM) are widely adopted. Such
methods require strict verification of
multicollinearity among variables and have
insufficient capacity to represent complex
nonlinear relationships.
3.1.3 Exponential Smoothing Method
The exponential smoothing method combines
historical data using exponentially weighted
averaging to directly forecast future values of a
time series.
Its formula is as follows:

x(t+1)= i=0
n α(1−α)ix(t−i)� (1)

In the formula, x(t+1) represents the predicted
value; x(t-i) represents the actual load value; α is
the attenuation factor; n is the number of initial
load values.
In the above formula, α is equal to 1/n, and the
value of α ranges between 0 and 1, reflecting the
principle of "recent points matter more." Its core
idea is that data from the more recent past has a
stronger influence on the forecast than older data.
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When α is larger, the weight coefficients
decrease more rapidly from recent to older data,
primarily to emphasize the importance of the
latest data in the forecasting process.

3.2 Machine Learning Models
Machine learning methods adaptively learn
complex nonlinear mappings between load and
multi-source features through data-driven
strategies, breaking the linear constraints of
traditional statistical models and demonstrating
significant advantages in the field of load
forecasting.
3.2.1 Support Vector Machine (SVM)
Support Vector Machines (SVM) utilize kernel
functions to map low-dimensional features into
high-dimensional space to construct optimal
separating hyperplanes. They exhibit strong
noise resistance and robustness in small-sample
scenarios, particularly suitable for modeling
mixed features like continuous variables
(temperature, humidity) and categorical
variables (holidays). However, their
computational efficiency decreases sharply with
data scale, and they are sensitive to kernel
function parameters requiring repeated tuning.
Literature[5]optimized the SVM parameter
selection process using a chaotic
electromagnetism-like algorithm, improving
convergence efficiency and optimization
capability, making it suitable for short-term
power load forecasting.
3.2.2 Random Forest
Ensemble tree models have become mainstream
tools for load forecasting. Random Forest (RF)
builds multiple decision trees via Bootstrap
sampling and integrates their outputs. It natively
supports feature interactions and unstructured
data processing (e.g., the "high temperature +
weekday" combination effect), effectively
reducing overfitting risks. Gradient Boosting
Trees (GBDT/XGBoost/LightGBM) adopt an
iterative residual fitting strategy, correcting
prediction errors step-by-step. Their advantage
lies in efficiently capturing temporal
dependencies (e.g., lagged load features) and
quantifying variable importance (e.g.,
identifying temperature sensitivity thresholds).
LightGBM's histogram optimization algorithm
further enhances computational efficiency for
minute-level high-frequency forecasting.
3.2.3 Other Methods
Other methods include K-Nearest Neighbors
(KNN), which performs weighted prediction

based on similar day patterns but is sensitive to
local fluctuations and prone to interference from
outliers; Gaussian Process Regression (GPR),
which provides probabilistic prediction outputs
to quantify uncertainty but suffers from high
computational complexity. Overall, while
machine learning methods possess capabilities
for automatic feature interaction and
multi-source heterogeneous data fusion, they
still face common challenges such as weak
model interpretability, dependence on
high-quality labeled data, and the need for
manual construction of temporal features (e.g.,
sliding window statistics). They often
complement deep learning in short-term
forecasting scenarios.

3.3 Deep Learning Models
Deep learning methods achieve
high-dimensional modeling of complex
spatiotemporal patterns in electric power loads
through multi-level feature abstraction and
end-to-end learning mechanisms, becoming
cutting-edge technologies for high-precision
forecasting.
3.3.1 Convolutional Neural Network (CNN)
Convolutional Neural Networks (CNN),
traditionally used for image processing, extract
local temporal patterns (e.g., weekday morning
peak shapes) in load forecasting using 1D
convolution kernels, or process spatial load data
(e.g., regional gridded consumption distribution)
using 2D convolution. Their advantages lie in
the shared weight mechanism reducing
parameter count and the ability to capture
long-period features using dilated convolutions
to enlarge the receptive field.
3.3.2Transformer
The attention mechanism and Transformer have
revolutionized time series modeling paradigms.
Self-attention layers dynamically assign
importance weights to different historical time
points (e.g., focusing on recent load or similar
day patterns), solving the sequential computation
bottleneck of RNN-based models. Positional
encoding preserves temporal order information.
Transformers excel in predicting long-term load
trends (e.g., weekly forecasts), particularly
suitable for fusing multi-source heterogeneous
inputs (external features like weather data,
economic indicators). Literature[6] proposed a
load forecasting model based on feature
embedding and Transformer. First, load feature
vectors are obtained by fusing load position,
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trend, periodicity, time, and weather information.
Then, the Transformer model mines the
nonlinear temporal dependencies within the
feature vectors. Finally, a fully connected layer
predicts the power load. *(Note: Ref [6] cited in
the Chinese text actually refers to an
LSTM-based method in the references, but the
description here matches a Transformer
approach. I've translated the text as provided.)
3.3.3 Graph Neural Network (GNN)
Graph Neural Networks (GNN) model the
spatial correlation of electric power loads. By
abstracting grid topology (substation-feeder-user
hierarchy) into graph data, they use Graph
Convolutional Networks (GCN) or Graph
Attention Networks (GAT) to aggregate
neighbor node information, enabling
collaborative forecasting of regional loads. Such
methods are indispensable in scenarios with high
penetration of distributed energy resources (e.g.,
where local PV output affects net load).

4. Future Research Directions

4.1 Cross-Domain Collaborative Forecasting
Innovation in cross-domain collaborative
forecasting paradigms requires breaking down
disciplinary barriers between meteorology,
economics, and power systems. Building
multimodal fusion networks (e.g., coupling
spatiotemporal graph convolution with
Transformers) to jointly deduce the cascading
effects of extreme weather events, industrial
chain fluctuations, and load evolution; further
linking carbon flow tracing technologies to
quantify load carbon emission intensity profiles,
supporting low-carbon scheduling in
high-energy-consumption parks and green
electricity trading pricing.

4.2 New Forecasting Requirements under
Carbon Neutrality Goals
New forecasting paradigms driven by carbon
neutrality scenarios are rapidly emerging. For
prosumer groups aggregated with "PV + storage
+ electric vehicles," net load bidirectional
fluctuation forecasting models need
development. Facing green electricity markets,
predicting the flexible adjustment potential of
loads and coupling carbon credit mechanisms to
provide dynamic pricing support for

carbon-electricity coordinated trading.
Chapter 5 Conclusion
Electric power load forecasting technology has
evolved from traditional statistical models
towards innovative paradigms of
multidisciplinary integration. Traditional
methods (e.g., ARIMA) retain simplicity
advantages in stable scenarios but struggle with
the complexity of high renewable energy
penetration. Machine learning (e.g., XGBoost)
dominates short-term forecasting through feature
interaction, while deep learning (LSTM,
Transformer, GNN) achieves leaps in long-term
accuracy via end-to-end spatiotemporal
modeling. Load forecasting is evolving from an
auxiliary tool into an intelligent decision engine
for new power systems. Its development will
profoundly empower the safe, economical, and
low-carbon transformation of the power grid.
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