

Practical Paths of Industry-Education Integration: Taking the Business School of University C as an Example

Zhimei Wang*

Business School, Central University of Finance and Economics, Beijing, China *Corresponding Author

Abstract: Against the backdrop of the global economic digital transformation and the indepth advancement of the "Digital China" higher business education confronted with the core dilemma of "disconnection between education and industry"—a mismatch between talent cultivation and industrial demands. This study takes the Business School of University C as the research object and adopts the case object and adopts the case study method to systematically deconstruct the practical background, implementation paths, and effectiveness mechanism of its industryeducation integration. The findings indicate that the School has constructed a threedimensional integrated practical system of "strategic guidance-cooperative innovationresource integration," forming distinctive experiences in dimensions such as the innovation of strategic guidance mechanisms, the reform of talent cultivation models, and the construction of university-enterprise collaborative platforms. This system has effectively realized the in-depth coupling of the educational chain, talent chain, industrial chain, and innovation chain. The conclusions of this study not only provide a replicable practical paradigm for industry-education integration in **business** colleges universities under the background of the New Liberal Arts but also enrich the theoretical system of industry-education integration in higher education from a micro perspective, offering empirical references for resolving the disconnection between business education and industrial development.

Keywords: Industry-Education Integration; Business Education; Digital Transformation; Collaborative Talent Cultivation; Construction of New Liberal Arts

1. Introduction

Currently, the new generation of information technologies represented by artificial intelligence, big data, cloud computing, and blockchain is accelerating the reshaping of the global industrial structure, driving the economic form lean from the traditional to industrialization model to a digital intelligent direction. According to the data from the Research Report on China's Digital Economy Development (2024) released by the Academy of Information Communications Technology (CAICT), China's digital economy scale reached 53.9 trillion yuan in 2023, accounting for 42.8% of GDP, and its contribution rate to national economic growth reached 66.45%, making it a core engine for promoting high-quality economic development. This transformation trend has put forward subversive requirements for the competence system of business talents: the traditional competence structure centered on theoretical knowledge can no longer meet industrial needs, and it has been replaced by a composite framework of "theoretical competence foundation + digital skills capabilities + innovative thinking." Specifically, under the background of the digital economy, business talents need to possess three core competence dimensions: first, interdisciplinary integration capability, which enables them to integrate knowledge of economics, management, and data science to solve composite problems such as digital marketing and intelligent supply technology chains: second, application capability, which allows them to proficiently use data analysis tools (e.g., Python, SQL, Tableau) and AI algorithm models (e.g., user profiling, intelligent recommendation, risk prediction) to address practical business pain points of enterprises; third, scenario-based innovation capability, which empowers them to design and implement business solutions based on real industrial scenarios (e.g., live-streaming

e-commerce, cross-border digital trade, green finance). However, China's current business education still has significant shortcomings: the update of curriculum systems lags behind industrial development, practical teaching relies on on-campus simulation laboratories (lacking real business scenarios and data resources), and the faculty team is insufficient in "dual-qualification" (both academic and industrial experience) characteristics, leading to a significant mismatch between "educational supply" and "industrial demand."

Industry-education integration is a crucial approach for "Double First-Class" universities to proactively serve national strategies, realize independent talent cultivation, and address "bottleneck" issues [1]. In recent years, the Chinese government has intensively issued policies to promote the development of industry-education integration in education, forming a multi-level and systematic policy system. In 2017, the Several Opinions on **Industry-Education** Deepening Integration clearly proposed to "deepen industry-education integration, promote the organic connection between the educational chain and the industrial chain, and advance the structural reform of the human resource supply side," which put forward a new strategic development idea for undergraduate education [2]. This opinion provided strategic planning and design for industry-education integration at the national level, aiming to promote the organic connection between the educational chain, talent chain, industrial chain, and innovation chain [3]. In March 2019, the National Development and Reform Commission and the Ministry of Education jointly issued the Measures for the Construction of Industry-Education Integration Enterprises (Trial Implementation), selecting and constructing a batch of industry-education integration enterprises and providing combined incentives of "finance + fiscal + land + credit." Since then, industry-education integration has been elevated from a vocational education policy to a basic strategy for the structural reform of the national human resource supply side. In July 2019, six national ministries and commissions iointly issued the **Pilot** Implementation Plan for National Industry-Education Integration Construction, which clearly stated that "deepening the reform of industry-education integration should be taken as a strategic task to advance the structural

reform of the human resource supply side." It coordinated the pilot construction of industryeducation integration cities, industries, and enterprises, adhered to government leadership, gave play to the role of the market, and ultimately realized that "the service contribution of education to economic development and industrial upgrading is significantly enhanced." In 2020, the General Office of the Ministry of Education and the General Office of the Information Ministry of Industry and Technology issued a special guiding document industry-education integration, Guidelines for the Construction of Modern Industrial Colleges (Trial Implementation), which required the construction of a number of modern industrial colleges co-established, comanaged, and shared by universities (focusing on application-oriented universities), local governments, and industrial enterprises in universities with distinctive features and close ties to industries. Modern industrial colleges have become a new model of industryeducation integration in higher education in the new era.

Driven by national policies, universities, and local governments have enterprises, successively established industry-education integration consortia, and new forms of industry-education integration organizations such as industrial colleges, industry-education integration enterprises, and universityenterprise cloud platforms have emerged across the country [4]. Through the in-depth integration of the educational chain, talent chain, industrial chain, and innovation chain, industryeducation integration has become a key grasp for promoting the reform of higher education and serving the high-quality development of industries, as well as an important path for improving the quality of talent cultivation and promoting industrial transformation upgrading. More and more universities and enterprises have participated in the practice of industry-education integration, cooperation between universities and enterprises has become increasingly close. The parties have carried out in-depth cooperation in talent cultivation, technological innovation, and social services, mainly in the forms of jointly building practical training bases and R&D centers, jointly developing curricula, and jointly running schools. Students have obtained more practical opportunities and

employment channels, while enterprises have focused on enhancing their own innovation capabilities and market competitiveness by participating in university teaching scientific research activities. The practice of industry-education integration has successively experienced the traditional models "university-enterprise cooperation order-based classes, and co-built internships and training bases," the "industry or industrial college" model, and then evolved into the "modern industrial college" model, achieving certain talent cultivation effects. However, a long-term mechanism for industry-education integration has not been truly established, and the "dilemmas of consensus, win-win, and cogovernance" still exist [5].

2. Literature Review

Industry-education integration jointly is undertaken by the industrial system and the educational system. Educational departments (mainly colleges and universities) and industrial departments (industries and enterprises) rely on their respective advantageous resources, take project cooperation as the carrier, and carry out a kind of educational activity with mutual cooperation. It is a process in which industries and colleges make two-way efforts and twointegration for their respective development [6]. The concept of industryeducation integration first appeared at the national policy level in the Key Work Points of the Ministry of Education in 2013, in which the Ministry of Education proposed to "vigorously promote industry-education integration and university-enterprise cooperation in vocational education, and establish an 'overpass' for technical and skilled talent cultivation." However, the connotation of industry-education integration has been significantly expanded since then. In a broad sense, industry-education integration refers to the mutual promotion, interconnection, and coordination between the national industrial sector and the educational sector, so as to realize the effective connection between the educational chain, talent chain, industrial chain, and innovation chain, and ultimately achieve the integrated development of the industrial sector and the educational sector. In a narrow sense, industry-education integration refers to the new type of cooperation in which universities, industrial departments, research institutes, and other multi-subjects,

under the guidance of the government or driven by market forces, realize coordination and cooperation in accordance with the principles of resource and complementary sharing advantages, and jointly carry out innovative talent cultivation, scientific research and technology R&D, transformation of scientific research achievements, innovation entrepreneurship, and industrial cultivation. Currently, in the talent cultivation models of industry-education integration at home and abroad, there are both enterprise-led talent cultivation models and university-led talent cultivation models. For example, in vocational education, enterprises propose talent cultivation objectives to colleges and universities according to their own needs. In higher education, enterprises play a leading role, work with universities to determine cultivation objectives, formulate cultivation plans, and provide practical resources. Industry-education integration requires universities and enterprises to integrate with each other, jointly participate in the whole process of talent cultivation, and implement a "dual-subject" talent cultivation model of universities and enterprises.

2.1 Research Status of Industry-Education Integration Abroad

Foreign research industry-education on integration began in the mid-20th century, with the German "Dual System" [7], American "Cooperative Education," and British System" "Sandwich Course typical as representatives. The German "Dual System" emphasizes the in-depth participation of enterprises in talent cultivation, with students spending 60%-70% of their study time on practical training in enterprises, forming a of closed loop "university-enterprise" collaborative talent cultivation: the American "Cooperative Education" focuses on combining classroom learning with enterprise practice, and improves students' employability through the cyclic model of "learning-practice-relearning"; the British "Sandwich Course System" focuses on vocational competence cultivation, with enterprises participating in curriculum design and assessment evaluation throughout the process.

Foreign practices of industry-education integration mainly focus on fields such as talent cultivation, research cooperation, and transformation of scientific and technological

achievements, emphasizing the participation and interaction of multiple subjects, and realizing the goal of industry-education integration through the integration of resources and factors. The core element of industryeducation integration is the effective matching between industrial demands and educational supply. The degree of recognition of the quality industry-education integration cultivation by the industrial sector determines intensity of the industrial independent, long-term, and stable investment in industry-education integration. International experience shows that the establishment of such a cooperative relationship depends not only on the rapid response of the education system to market demands but also on the effective utilization of educational achievements by the industrial sector [8]. Major developed countries in the West have formed their own matching characteristics in industry-education integration. The strategies and practices of industryeducation integration in different countries not only ensure the effective matching between educational supply and industrial demands but reflect their respective educational philosophies and economic development trends. The cooperation between German higher education institutions and the industrial sector focuses on the technical and engineering fields, characterized by technology orientation and practicality. German universities have close cooperation with the industrial sector and carry out research projects with strong pertinence and high applicability. As typical representatives of research universities and application-oriented universities respectively, the University of Munich (TUM) and Amberg University of Applied Sciences have actively deepened the reform of "industrial chain" adaptation in the industrial field, allowing enterprises to deeply participate in collaborative talent cultivation as special subjects.

The cooperation between American universities and the industrial sector prominently focuses on innovation-driven and entrepreneurial spirit cultivation, forming a relatively complete innovation and entrepreneurship education system. For example. entrepreneurial universities such as the Massachusetts Institute of Technology (MIT) and Stanford University have established university-level and collegeinnovation and entrepreneurship institutions. MIT's Bernard M. Gordon-MIT

Engineering Leadership Program, Deshpande Center for Technological Innovation, and D-Lab (Development Lab) all maintain close ties with relevant industries, spawning a considerable number of new projects and new companies.

The cooperation between British higher education institutions and the industry has its uniqueness in interdisciplinary and crossorganizational knowledge transfer. For example, the famous University of Warwick has formed a large number of entities with strong scientific research capabilities and high conversion rates based on cooperation with industry and commerce, such as the Warwick Manufacturing Group (WMG) and Science and Technology Park; at the same time, it has also established training departments, such as the Warwick Business School, Teacher Training College, and Horticultural Center, to help teachers improve their teaching capabilities and carry out industrial and commercial courses serving the world.

2.2 Research Status of Industry-Education Integration in China

industry-education integration Since attracted the attention of the academic community, scholars have discussed connotation, policies, mechanisms, and models [9]. First, a large number of literatures have discussed the connotation, mechanism, conflicts, and resolution of industry-education integration, laying a foundation for the research on industry-education integration. Second, research on the evolution, diffusion, and coordination of industry-education policies related to integration has been carried out, such as the development process, historical perspective, and strategic choices of industry-education integration policies, as well as the coordination, diffusion mechanism, and institutionalized development of industry-education integration policies at the national ministry, provincial, and university levels. Third, the mechanisms and for promoting industry-education integration have been advanced, such as the industry-education integration design of mechanisms, the establishment of five-in-one integration and innovation consortia, reconstruction of value chains, the creation of industry-education integration models in line with China's economic transformation, thinking transformation, and evolution paths. Fourth,

research on the "four chains" of industryeducation integration has been conducted, such as the construction of a logical framework for the interconnection of the "four chains" from the perspective of dual domains, and the collaborative innovation based on dual-level spiral and the cultivation model of innovative talents.

From the perspective of the type of education involved in industry-education integration, the research covers all higher education types including vocational education, undergraduate education, and postgraduate education. Among them, vocational education has received the in industry-education highest attention integration, mainly focusing on the following first, research on the mechanism of industry-education integration. Some scholars have analyzed the influencing factors of enterprises, universities, governments, and other departments participating in industryeducation integration from the perspective of property rights economics. Second, research on the operation mechanism of industry-education integration, with research perspectives involving power structure and operation mechanism construction. Third, research on the problems and countermeasures of industryeducation integration, such as the construction of industry-education integration symbiotic bodies in vocational education, and the bottlenecks and breakthrough paths of industryeducation integration in vocational education. research on industry-education integration models and practical exploration. These models include macro industry-education integration models such as the industryeducation integration park model, meso industry-education integration organizational forms such as industrial colleges, and micro professional clusters or majors and courses. Fifth, research on the evaluation of industryeducation integration.

The research on industry-education integration at the undergraduate level includes both the research on the development paths and strategies of industry-education integration in local undergraduate universities and the research on the talent cultivation models of industry-education integration in "Double First-Class" construction universities. Some scholars have studied how to realize the collaborative cultivation of industry-education integration in postgraduate education to improve the practical

and innovative capabilities of postgraduates. In addition, some scholars have conducted research on macro industry-education integration policies.

However, the current research on industryeducation integration is inconsistent with the goals and requirements proposed in the Several Opinions on Deepening Industry-Education Integration, such as "realizing the organic connection between the educational chain. talent chain, industrial chain, and innovation chain" and "establishing and improving the institutional mechanism for the in-depth participation of industrial enterprises in vocational education and higher education university-enterprise cooperative cultivation and collaborative innovation." Empirical research on "Double First-Class" construction universities, especially business colleges and universities, still needs to be strengthened. Despite the increasing policy support, industry-education integration faces problems such as insufficient participation of industrial enterprises in school-running, insufficient integration between universities and enterprises, single organizational forms, lack of incentives for enterprises, poor sustainability, and "disconnection" between the demand side of enterprises and the supply side of schools [10]. The root cause of these problems lies in the different value goals of the industrial field and the educational field, which in turn leads to inconsistent action logics of relevant subjects in cooperation. When enterprises cannot achieve goals in industry-education their value integration, their enthusiasm for participation will be weakened [11]. In addition, the effectiveness of the collaboration mechanism between the industrial sector and universities in the process of collaborative talent cultivation still needs to be improved, and the goal planning, positioning, and realization paths of talent cultivation are not clear enough. As a result, the open, diversified, and systematic characteristics of industry-education integration are not truly reflected in the talent cultivation process, which seriously hinders the supporting role of the industry-education integration talent cultivation model in innovative cultivation. Therefore, enabling enterprises to participate in industry-education integration and actively exploring effective paths for industry-education integration in business colleges and universities have become

important issues in the current reform of higher education.

This study takes the industry-education integration talent cultivation of the Business School of University C as a typical case, systematically analyzes the practical framework and effectiveness mechanism of industryeducation integration in business colleges and universities, supplements the empirical research on industry-education integration in higher education, enriches the theoretical system of the New Liberal Arts education reform, refines replicable and promotable practical experience of industry-education integration, focuses on improving the quality of business talent cultivation, and provides references for similar business colleges and universities to solve the problem of "disconnection between education and industry."

3. Practical Background and Implementation Paths of Industry-Education Integration in the Business School of University C

3.1 Practical Background of Industry-Education Integration in the Business School of University ${\bf C}$

Relying on the two advantageous disciplines of "Economics and Management" of the university, the Business School of University C is an important supporting unit of the national "Double First-Class" construction discipline (Applied Economics). The School currently has four undergraduate majors, namely Business Administration. Marketing (Big Marketing), Human Resource Management, and Supply Chain Management. It also has a firstlevel doctoral program in Business Administration, a master's program, and an professional degree authorization program, forming a complete talent cultivation covering "undergraduate-mastersystem doctorate." The School has conducted a "Survey on the Matching Degree between Industrial Demands and Talent Cultivation," and the survey results show that business education has problems such as significant skill gaps, insufficient practical capabilities, and lack of industrial experience among faculty. Based on the above dilemmas, the School has launched the in-depth industry-education integration project, aiming to reconstruct the talent cultivation system through university-enterprise collaboration, realize the accurate connection

between "educational supply" and "industrial demand" and provide solid telept and

demand," and provide solid talent and intellectual support for the development of the digital economy.

3.2 Implementation Paths of Industry-Education Integration in the Business School of University C

3.2.1 Strategic guidance: constructing a toplevel design system for industry-education integration

Clarifying the strategic positioning of industryeducation integration. With "fostering virtue through education" as its fundamental task, the School has incorporated industry-education integration into its "14th Five-Year Plan" development plan and established a three-in-one innovative development strategy of "universityenterprise cooperation, industry-education integration, and university-local integration." To ensure the implementation of the strategy, the School has set up a leading group for industry-education integration, which responsible for coordinating universityenterprise cooperation, practical teaching, social services, and other work. At the same time, the School has incorporated industry-education integration tasks into the assessment system of each department, clarified the division of responsibilities, and included the achievements of teachers' participation in industry-education integration (e.g., horizontal projects, enterprise services) into the professional title evaluation and performance distribution system to encourage teachers to proactively connect with industrial demands. It has also established a student practical credit system to encourage students to actively participate in enterprise internships or industrial project research, forming a working mechanism of "unified School, leadership by the coordinated promotion by each department, and extensive participation by teachers and students," which solves the problem of "multi-head management and insufficient coordination" in traditional universities.

Constructing a multi-party collaborative decision-making mechanism. Breaking through the limitation of "going it alone" in traditional universities, the School has built a decision-making and consultation mechanism involving the School, industry associations, enterprises, and local governments, ensuring that the direction of industry-education integration is

accurately aligned with industrial demands. It established an Industry Advisory Committee, inviting industry experts to serve as members to provide consultation on major setting, curriculum reform, and the formulation of talent cultivation plans; established a University-Enterprise Cooperation Council, composed of senior executives of cooperative enterprises, School leaders, and teacher representatives, which holds an annual meeting to review the progress of university-enterprise cooperation projects; organized and University-Local Collaborative Development Forum, jointly held with local governments to connect with local industrial demands. In addition, the School has taken the lead in establishing one of the first national enterprise case research bases, jointly developing teaching cases with enterprises, formulating talent cultivation plans and industrial service plans together, and actively exploring effective paths for in-depth cooperation between the School, enterprises, government departments, and industry associations in talent cultivation, scientific research, and innovation.

3.2.2 Cooperative innovation: building a new ecosystem for industry-education integration Innovating the talent cultivation model. To meet the urgent demand of enterprises for compound talents with management, data analysis, and computer skills in the big data era, the School has launched a "Big Data Elite Class" based on the Big Data Marketing major. offers practical application-oriented extracurricular training courses for all students to help them master the basic programming skills required for big data analysis, in-depth study data analysis tools and methods such as data visualization, text mining, linear regression models, and generalized regression models, and comprehensively cultivate students' capabilities in data analysis, data interpretation, data presentation, and independent use of data analysis tools to solve various practical problems in the business environment. The curriculum system is divided into four modules: Programming, Multivariate Statistical Analysis, Data Mining and Text Analysis, and Comprehensive Practice. After passing the corresponding assessment, students are awarded a completion certificate, and outstanding students are recommended by the School for enterprise internships or participation in enterprise-related projects. Relying on the "Big

Data Elite Class" platform, the School has held the "Data · Marketing · Innovation Forum," which focuses on big data, marketing, and innovation. It invites outstanding entrepreneurs and well-known academic scholars to give lectures at the university, explaining the practice and innovation of big data marketing under the background of "Internet +" from various perspectives, providing students with valuable opportunities to get close to academic frontiers and industry practices. In addition, the School actively creates interaction opportunities between enterprises and students, and has iointly built internship platforms companies such as Baifendian, Gongxiong Club, and DeepGlint to promote the integration of practice and teaching in the field of big data marketing and advance industry-education integration.

Optimizing major settings. Based on national development strategies and actual demands, the School has continuously deepened the structural reform of the undergraduate major supply side, given full play to its disciplinary comparative advantages, and innovatively constructed a new interdisciplinary mechanism for talent It has successively obtained cultivation. approval for the double bachelor's degree programs of "Supply Chain Management + Economic Statistics" and "Law + Business Administration," strengthened the two-way connection between legal theories enterprise management practices, promoted the digital and intelligent upgrading of supply chains, and served the needs of industrial transformation and upgrading internationalization strategies. Among them, the double bachelor's degree program of "Supply Chain Management-Economic Statistics" takes "intelligent supply chain" as the core, integrates supply chain strategic decision-making, supply chain operation management, and economic statistics methods, and cultivates high-level compound talents with big data analysis and intelligent decision-making capabilities "Supply Chain Management + Economic Statistics." The undergraduate double bachelor's degree program of "Business Administration + Law" takes "integration of law and business" as the core, integrates the operation management strategic planning of business administration with the legal system and legal application methods of law, and cultivates highlevel compound talents in "Business

Administration + Law" with business operation and legal risk prevention capabilities. Students will master solid business administration knowledge, have an international perspective, be able to insight into changes in domestic and foreign business and legal environments, possess outstanding leadership potential and cross-field problem-solving capabilities, and make legal and strategically sound decisions in complex business scenarios to contribute to the compliance development of enterprises and the progress of the industry.

Building a social service platform. The School has established cooperative relationships with local governments and enterprises, carried out activities such as decision-making consultation and training services, and opened a closed loop of "teachers' industrial practice-students' skill cultivation-enterprise demand satisfaction." It organizes teachers to give full play to their professional advantages, provide intellectual support for the economic and development of local areas, transform the School's intellectual resources into industrial innovation momentum, and promote teachers' transformation from "passive participation" to leadership," truly realizing "symbiosis and mutual prosperity" of education and industry. For example, Professor Zhang, an advanced individual in the national poverty alleviation campaign, guided the marketing of agricultural products in poverty-stricken areas and established a poverty alleviation model of "information network + industrial chain finance." Among them, the "Jinnong Yidai" model of Bozhou Yaodu Rural Commercial Bank in Anhui Province was commended at the National Poverty Alleviation Campaign Commendation Conference.

3.2.3 Resource integration: creating an industry-education integration consortium

Deepening the construction of university-enterprise collaborative platforms. The School has successively signed strategic cooperation agreements with enterprises such as Sitchi, Western Securities, and Zhidemaicom, jointly building "Industry-Education Integration Joint Laboratories" to promote technology R&D and talent cultivation in fields such as AI large models and digital transformation, jointly explore innovative paths for university-enterprise collaborative development, and inject dual impetus of talent and technology into the construction of Digital China. At the same time,

it has introduced senior enterprise executives to serve as MBA chair professors, alumni mentors, and enterprise mentors, and invited senior enterprise executives or business backbones to teach enterprise cases, realizing the "in-class industrial mentors," teaching by continuously enriches the curriculum knowledge structure of students and lays a solid foundation for improving their employability. Strengthening the construction of industryeducation integration bases. The School has established a Career Development Center, built industry-education integration bases typical enterprises in the industry, organized a series of practical teaching and practical activities such as "Enterprise Visits," "Enterprise Visits for Job Expansion," and "Hezhonghe Career Development Lecture Hall." A number of teaching achievements have been approved for provincial and ministeriallevel projects, and many industry-education integration cases have won the "National Top 100 Excellent Management Cases."

4. Practical Insights

4.1 Improving Mechanisms is a Key Driver of Industry-Education Integration, Requiring the Strengthening of Institutional Coupling

The practice of the Business School of University C shows that the effective coupling between mechanism construction and industryeducation integration can inject lasting impetus into education reform. The core insights are as follows: first, incorporating industry-education integration into the assessment system, and avoiding "disconnection between mechanism construction and business" through mechanisms such as "teaching teams connecting with enterprise projects" and "professional teachers leading practical teaching"; second, giving play to the resource integration advantages of platforms, and connecting government and enterprise resources through cooperative platforms; third, taking value guidance as a link, and integrating industry development concepts into the whole process of industry-education integration. This insight provides a replicable framework for similar institutions: it is necessary to clarify the collaborative path between mechanism construction and industryeducation integration from the institutional level, rather than merely staying in the

superficial combination at the activity level.

4.2 Collaborative Talent Cultivation Requires the Construction of a Closed Loop of "Four-Dimensional Chains" to Break Down Barriers Between Subjects

The in-depth coupling system of "educational chain-talent chain-industrial chain-innovation chain" constructed by the School reveals the key logic of industry-education integration in business education: first, driving the reform of the "supply side" with the "demand side," and directly transforming enterprise demands into the design basis of talent cultivation plans through mechanisms such as the Industry Advisory Committee; second, promoting the transformation from "one-way output" to "twoway co-creation," avoiding the superficial cooperation in which universities only "supply graduates" to enterprises, but realizing the closed loop of "transforming university intellectual resources into enterprise innovation momentum and feeding back enterprise practical resources to university teaching and research" through forms such as ioint laboratories and co-built projects; third, strengthening the hub role of the "innovation chain," and linking students' innovation and entrepreneurship competitions, scientific research projects with enterprise technical problems to realize the transformation "competition achievements-enterprise application-teaching cases." This insight indicates that industry-education integration in business education needs to break through the of traditional cognition "employment orientation" and shift to the ecological construction of "innovation orientation," so that the four chains form a positive cycle of mutual empowerment.

4.3 Resource Integration Needs to Focus on the Construction of "Consortia" to Solve the Problem of Long-Term Effectiveness

The industry-education integration consortium built by the School provides a solution to the problem of "short-term and fragmented university-enterprise cooperation." The core insights are as follows: first, constructing a cooperation mechanism of "benefit sharing and risk bearing" to avoid the one-way demands of universities "seeking resources" and enterprises "seeking talents"; second, promoting the extension from "hardware co-construction" to

"cultural integration," allowing university teachers and students to deeply understand the enterprise operation culture through methods such as "enterprise mentors entering the classroom" and "students taking on internships enterprise positions," while enabling enterprise executives to participate in university academic seminars and promote transformation enterprise of practical experience into academic theories; third, strengthening resource coordination relying on third-party platforms. The Career Development Center established by the School not only connects with enterprise positions but also integrates alumni resources. This insight shows that the core of the industry-education not integration consortium is "resource superposition" but "mechanism innovation." It necessary to make universities and enterprises change from "cooperative partners" to "development consortia" through interest binding, cultural integration, and policy leveraging.

4.4 Industry-Education Integration in Business Education Needs to Highlight the Feature of "Digital Empowerment" to Match Industrial Transformation Demands

As a finance and economics university, the highlights practice of the School differentiated path of industry-education in business education: integration integrating digital skill cultivation into the whole process of talent cultivation, avoiding the transformation of superficial "traditional business courses + digital tool training," but systematically integrating digital elements into the curriculum system, practical projects, and faculty team from three aspects; second, focusing on the interdisciplinary field of "finance and economics + digital," giving play to the advantages of business colleges and universities in finance, supply chain, marketing, and other fields, and cooperating with enterprises to solve segmented problems such as "digital financial risk control" and "supply chain digital and intelligent scheduling," rather than blindly following technological R&D; third, promoting the extension of "digital empowerment" to social services, and applying business digital skills to fields such as rural revitalization and the transformation of small and medium-sized enterprises. This insight indicates that industry-education integration in

business colleges and universities needs to be based on their own disciplinary advantages, identify the combination point between "digital economy and business fields," and avoid falling into the misunderstanding of "valuing technology over finance and economics" to form differentiated competitiveness.

5. Conclusions and Prospects

5.1 Research Conclusions

Through a systematic analysis of the industryeducation integration practice of the Business School of University C, this study draws the following conclusions: first, under background of the digital economy, business colleges and universities need to reconstruct the industry-education integration system through the three-dimensional framework of "strategic guidance-cooperative innovation-resource integration" to solve the core dilemma of "disconnection between talent cultivation and industrial demands"; second, collaborative talent cultivation and consortium construction supports for industry-education key integration in business education, among which collaborative talent cultivation realizes the coupling of the four chains, and consortium construction ensures the long-term effectiveness cooperation; third, industry-education integration in business education needs to highlight the combination of "digital empowerment" and "finance and economics characteristics," realize the and dual of educational improvement value and industrial value through digital skill cultivation, interdisciplinary cooperation, and the extension of social services.

5.2 Research Prospects

In the future, the industry-education integration practice of the Business School of University C can be deepened in three directions: first, expanding the dimension of "international industry-education integration," relying on the university's international cooperation resources to jointly build a "Joint Laboratory of Cross-Border Digital Trade" with overseas benchmark enterprises, and cultivating digital business talents with a global perspective; second, exploring the construction of a "microcredential" system, connecting enterprise practical projects with professional qualification certifications such as "Digital Marketer" and

"Supply Chain Analyst" to enhance the "skill endorsement" of students' employment; third, constructing an "industry-education integration effectiveness evaluation model," designing quantitative indicators from dimensions such as "talent matching degree," "enterprise benefit value," and "social contribution degree," to provide a reference evaluation standard for similar institutions. For business colleges and universities, industry-education integration is not a short-term "policy response" but a long-"strategic choice." Only by basing themselves on disciplinary characteristics, innovating cooperation mechanisms, strengthening value co-creation can they cultivate high-end business talents understand both finance and economics theories and digital skills, possess both practical capabilities and innovative thinking in the wave of the digital economy, and provide solid talent support for the construction of Chinese-style modernization.

References

- [1] Geng L L, Zhang M. Dilemmas and Breakthroughs of Industry-Education Integration in "Double First-Class" Construction Universities. Chongqing Higher Education Research, 2025(4): 47-58.
- [2] Xia C M, Rao P H, Jin X Y, et al. Construction and Model Innovation of a High-Quality Applied Talent Cultivation System with "Three Collaborations and Eight Integrations"—Taking the Practice of Industry-Education Integration and Collaborative Talent Cultivation in Shanghai University of Engineering Science as an Example. Research in Higher Education of Engineering, 2025(4): 106-111.
- [3] Chen L B, Zhao L S, Wang X H. Practical Dilemmas and Optimization Paths of Higher Education Industry-Education Integration from the Perspective of New-Quality Productive Forces. Research in Higher Education of Engineering, 2025(1): 111-116.
- [4] Gong Z W, Cai Q L. Research on the Construction of Industry-Education Integration Consortia from the Perspective of Symbiosis Theory. Heilongjiang Researches on Higher Education, 2024, 42(9): 137-143.

- [5] Shen J, Xu S K, Xie W. Logical Framework, Implementation Dilemmas and Path Breakthroughs of Higher Education Industry-Education Integration Policies in China. Higher Education Exploration, 2021(70): 11-18.
- [6] Chen L, Hu Y X, Zhang Z N, et al. Industry-Education Integration: Cultivating Students' Creativity and Execution with "Real Problems". Research in Higher Education of Engineering, 2023(5): 65-69.
- [7] Tao D M, Li W F. Characteristics of Industry-Education Integration in German Universities of Applied Sciences and Their Enlightenments. Beijing Education (Higher Education Edition), 2025(2): 21-23.
- [8] Xu S K, Li Z Y, Wang J H. High-Quality Development of University Industry-Education Integration: International Experience, Chinese Advantages and Future Prospects. Research in Higher

- Education of Engineering, 2024(3): 109-114
- [9] Zhang Q M, Gu Y P. Linkage and Coordination: The Internal Logic of the Organic Connection of the "Four Chains" in Industry-Education Integration. Journal of National Academy of Education Administration, 2021(4): 111-116.
- [10] Zhu X B, Gao P, Zhang S. Exploration on the Entity Operation Model of Industry-Education Integration in Local Universities—Taking University N in Shanghai as an Example. Forum on Science and Technology in China, 2025(3): 108-116.
- [11] Wu Q C, Xu G Q. Action Research on Enterprises' In-Depth Participation in Industry-Education Integration from the Perspective of Value Capital Co-Creation. Higher Education Exploration, 2024(4): 75-80.