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Abstract: This study explores the
effectiveness of incorporating
Squeeze-and-Excitation attention mechanisms
into the ResNet-18 model for enhancing
medical image classification performance.
Three datasets with distinct classification
tasks were selected: PneumoniaMNIST for
pneumonia detection, RetinaMNIST for
retinal disease classification, and
OrganMNIST for multi-label organ
recognition. The model's performance was
evaluated on each dataset accordingly. During
training, stochastic gradient descent was used
as the optimizer, and task-specific loss
functions were applied based on the
classification type. Experimental results show
that the attention-enhanced model
outperforms the baseline ResNet-18 in both
classification accuracy and generalization
across tasks. It demonstrates improved
stability and adaptability, highlighting its
potential for practical applications in clinical
diagnostics.
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1. Introduction
The diagnosis of diseases such as pneumonia,
breast cancer, and dermatological conditions
relies heavily on advances in medical image
classification. However, high inter-class
similarity, limited annotated data, and domain
discrepancies often pose significant challenges
to achieving accurate diagnoses. Deep
learning-particularly convolutional neural
networks (CNNs)-has made notable progress in
medical image analysis by automatically
extracting meaningful features from images,
thereby improving diagnostic accuracy.
Medical image datasets such as
PneumoniaMNIST, RetinaMNIST, and

OrganMNIST provide standardized benchmarks
for a range of diagnostic imaging tasks, each
tailored to address specific challenges in
AI-assisted diagnosis. PneumoniaMNIST is a
binary classification dataset designed to train
models to detect pneumonia from chest X-rays.
RetinaMNIST, by contrast, is a multi-class
dataset that uses retinal fundus images to help
models identify various retinal conditions, such
as diabetic retinopathy. OrganMNIST presents a
multi-label classification task, enabling models
to simultaneously recognize multiple
pathological features or disease labels, such as
tumors, from axial slices of CT or MRI scans.
Together, these datasets span a variety of
imaging modalities and highlight the need for
robust, generalizable models capable of adapting
across diverse medical domains[1].
Existing models such as ResNet-18 have
achieved commendable performance in medical
image classification tasks. However, their
limited ability to adaptively focus on critical
lesion areas can reduce effectiveness,
particularly when detecting subtle pathological
features. Moreover, during feature extraction,
ResNet lacks an explicit mechanism to weigh the
importance of different channels, which may
cause essential diagnostic information to be
overlooked. Attention mechanisms, inspired by
the human visual system, enable models to
dynamically learn and concentrate on the most
discriminative regions and features within an
image. By adaptively assigning weights to
different feature channels based on input content,
attention modules can effectively address these
limitations.
This study aims to evaluate the performance of a
hybrid model that integrates ResNet-18 with
attention mechanisms on the PneumoniaMNIST,
RetinaMNIST, and OrganMNIST datasets. The
focus will be on improving model accuracy and
robustness across binary classification,
multi-class classification, and multi-label
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classification tasks. Specifically, the research
will investigate how attention mechanisms
enhance the model's ability to adaptively attend
to critical features, thereby optimizing feature
extraction in complex medical images.
Additionally, the study will assess the model's
generalizability across tasks and datasets to
ensure its effectiveness and potential
applicability in diverse medical imaging
scenarios[2].

2. RelatedWork
Deep convolutional networks have achieved
remarkable success in image classification by
naturally integrating low-, mid-, and high-level
features with classifiers in an end-to-end,
multilayer architecture. Stacking more layers
helps enrich these hierarchical features,
contributing to the network's ability to capture
increasingly complex patterns. However, despite
improvements brought by normalized
initialization and intermediate normalization
layers, challenges such as vanishing and
exploding gradients persist as networks grow
deeper. These techniques provide only partial
relief, and their effectiveness diminishes with
increasing depth[3].
ResNet addresses this issue by introducing
shortcut connections to learn residual mappings,
making deeper networks easier to optimize.
Instead of forcing each stacked layer to learn the
full underlying transformation H(x), ResNet
encourages the network to learn the residual
function F(x):=H(x)−x. The original input X is
then added back to the output of the stacked
layers, yielding the final output F(x)+x. This
identity-based skip connection does not

introduce additional parameters or
computational overhead, allowing the network to
maintain end-to-end training using standard
stochastic gradient descent (SGD), as shown in
Figure 1. The result is a more stable and efficient
optimization process, even in very deep
architectures[3].

Figure 1. ResNet Architecture
ResNet-18 is an efficient and widely adopted
18-layer convolutional neural network within the
ResNet family. It begins with a large 7×7
convolutional layer followed by a max-pooling
layer, which performs initial feature extraction
and spatial downsampling on the input image.
The core of the network consists of four residual
stages, each comprising two stacked basic
residual blocks. Within each residual block, the
input is passed through two consecutive 3×3
convolutional layers, each followed by batch
normalization and ReLU activation. A shortcut
connection directly adds the block's input to the
output of these two layers, enabling the network
to learn a residual mapping instead of a full
transformation[4]. This identity-based skip
connection effectively mitigates the problems of
vanishing/exploding gradients and degradation
that typically occur in deep networks. It allows
gradient information to propagate more
smoothly and facilitates stable end-to-end
training, while preserving the ability to learn
complex features across layers, as shown in
Table 1.

Table 1. Residual Network Variants
layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer

conv1 112×112 7×7,64, stride 2

conv2_x 56×56
3×3 max pool, stride 2

3×3,64
3×3,64 ×2 3×3,64

3×3,64 ×3
1×1.64
3×3.64
1×1.256

×3
1×1.64
3×3.64
1×1.256

×3
1×1.64
3×3.64
1×1.256

×3

conv3_x 28×28 3×3,128
3×3,128 ×2 3×3,128

3×3,128 ×4
1×1,128
3×3,128
1×1,512

×4
1×1,128
3×3,128
1×1,512

×4
1×1,128
3×3,128
1×1,512

×8

conv4_x 14×14 3×3,256
3×3,256 ×2 3×3,256

3×3,256 ×6
1×1,256
3×3,256
1×1,1024

×6
1×1,256
3×3,256
1×1,1024

×23
1×1,256
3×3,256
1×1,1024

×36

conv5_x 7×7 3×3,512
3×3,512 ×2 3×3,512

3×3,512 ×3
1×1,512
3×3,512
1×1,2048

×3
1×1,512
3×3,512
1×1,2048

×3
1×1,512
3×3,512
1×1,2048

×3

1×1 average pool,1000-d fc, softmax
FLOPs 1.8 × 109 3.6 × 109 3.8 × 109 7.6 × 109 11.3 × 109

Although ResNet-18 effectively alleviates
gradient vanishing and exploding problems in

deep networks through residual connections, it
may still overlook subtle but critical features
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when processing a large number of channels. As
a result, the model might fail to fully leverage all
key information present in medical images. The
Squeeze-and-Excitation (SE) module offers an
effective solution to this issue by explicitly

modeling the interdependencies between feature
channels, thereby enhancing the network's
sensitivity to informative features. The SE
module consists of four main components, as
shown in Figure 2.

Figure 2. SE Architecture
Transformation: the input feature maps are first
projected into a new, more discriminative feature
space through a series of convolutional layers.
This step lays the foundation for the subsequent
attention mechanism by enhancing feature
representation[5].
Squeeze: to address the limitation of spatially
fragmented local features and improve global
semantic understanding, SE introduces global
average pooling (GAP). GAP compresses each
2D feature map into a single scalar by averaging
all spatial positions within each channel,
resulting in a channel descriptor vector of length
C. This operation captures holistic contextual
information for each channel.
Excitation: the Excitation phase of the SE
module employs a bottleneck structure
composed of two fully connected layers to
adaptively learn channel-wise attention weights.
First, a dimensionality-reduction fully connected
layer with ReLU activation compresses the
channel dimension, effectively reducing
computational cost. This is followed by a
dimensionality-expansion fully connected layer
with Sigmoid activation, which restores the
original number of channels and generates
attention weights ranging between zero and one.
These weights are then applied to recalibrate the
feature maps at the channel level, where values
closer to one indicate more important channels,
enabling the network to autonomously enhance
critical features while suppressing less
informative ones.
Scale: finally, the learned attention weights are
applied to the original feature maps via
channel-wise multiplication. Channels with
higher weights are amplified, while those with
lower weights are attenuated. This feature
rescaling mechanism enables the network to
dynamically adjust the contribution of each
channel, enhancing its ability to focus on
discriminative regions and improving overall
feature representation.

By integrating this attention mechanism, the SE
module significantly boosts the model's capacity
to capture task-relevant features and improves its
discriminative performance in complex visual
recognition tasks, including medical image
analysis[6].

3. Methodology
To enhance the model's ability to identify
informative feature channels in medical images,
this study integrates the Squeeze-and-Excitation
(SE) module into the ResNet-18 architecture. By
explicitly modeling inter-channel dependencies,
the SE module adaptively recalibrates
channel-wise feature responses[7].
We incorporate the SE module into each residual
block (BasicBlock) of ResNet-18, forming a
modified structure referred to as the
SE-BasicBlock. The SE module is inserted after
the convolutional and batch normalization layers
within the residual branch, but before the
addition with the identity shortcut. This
placement allows the recalibrated features to be
effectively combined with the original input,
enhancing the model's sensitivity to key features
without disrupting the residual learning process,
as shown in Figure 3.

Figure 3. Experimental Architecture Design
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3.1 Integration of ResNet-18 with the SE
Attention Mechanism
The integration is implemented by modifying the
BasicBlock module in the model definition.
Defining the SELayer: A custom SELayer is first
defined as a subclass of PyTorch's nn.Module.
This module consists of global average pooling,
two fully connected layers, and activation
functions (ReLU and Sigmoid), implementing
the full Squeeze-and-Excitation operation.
Modifying the BasicBlock: in the __init__
method of BasicBlock, an instance of SELayer is
created. In the forward method, the output of the
main branch (i.e., after the second convolutional
and batch normalization layers) is passed
through the SELayer. The SELayer generates
channel-wise attention weights, which are then
multiplied back onto the main branch output to
recalibrate the features. Finally, the recalibrated
features are added to the identity shortcut branch
(the skip connection), and the result is passed
through a ReLU activation function.

3.2 Dataset
This study employs the MedMNIST dataset
series for model evaluation. These datasets are
constructed from real medical images and
uniformly preprocessed into an MNIST-like
format, facilitating reproducibility and
cross-method comparisons. Three representative
datasets were selected, each corresponding to a
different type of classification task:
PneumoniaMNIST is used for a binary
classification task, aiming to determine whether
a patient has pneumonia based on chest X-rays.
The dataset is derived from pediatric chest
radiographs and contains images labeled as
either normal or pneumonia. All images are
grayscale with a resolution of 28×28 pixels. The
dataset includes 4,708 training samples, 524
validation samples, and 624 test samples,
totaling 5,856 images, making it a convenient
benchmark for binary medical image
classification[8].
RetinaMNIST focuses on multi-class
classification, using fundus images to identify
various retinal diseases. Although the original
images are in color, they have been converted
into single-channel 28×28 grayscale images in
the MedMNIST format. The dataset contains
1,080 training samples, 120 validation samples,
and 300 test samples, for a total of 1,500 retinal
images.

OrganCMNIST, a subset of the OrganMNIST
series, is designed for multi-label classification
tasks based on coronal slices from CT or MRI
scans. Similar to other datasets in the
OrganMNIST series, it aims to identify multiple
organs or pathological features from a single
image. All images are standardized to 28×28
grayscale format to simplify analysis. The
dataset includes 12,975 training samples, 2,392
validation samples, and 8,216 test samples, with
a total of 23,583 images.

3.3 Optimizer and Learning Strategy
Optimizer: this study adopts the classic
Stochastic Gradient Descent (SGD) optimizer,
widely used in the ResNet family. The
momentum parameter is set to 0.9, which helps
accelerate convergence and aids in escaping
local minima. Compared to adaptive optimizers
like Adam, SGD tends to offer better
generalization in medical image classification
tasks. When combined with appropriate
regularization strategies, it can effectively
mitigate overfitting.
Loss Function: this study employs an adaptive
loss function selection strategy based on the task
type. The system first loads the medmnist.json
metadata file to extract the task attribute (e.g.,
multi-label/binary-class or multi-class) for the
current dataset. The appropriate loss function
module is then initialized accordingly[7].
For multi-label, binary-class classification tasks,
nn. BCEWithLogitsLoss() is chosen as the loss
function. This function internally applies a
Sigmoid activation to convert the network's
output logits into independent probability
predictions, subsequently calculating the binary
cross-entropy loss for each label.
For standard multi-class classification tasks,
nn.CrossEntropyLoss() is utilized. This function
internally integrates LogSoftmax and negative
log likelihood loss. In this framework, binary
classification tasks are categorized under the
multi-label/binary-class type to maintain
consistency with the MedMNIST benchmark[8].

3.4 Data Preprocessing Pipeline
This study employs a standardized data
preprocessing pipeline tailored to the
characteristics of the MedMNIST dataset series,
involving two core steps:
Tensor Conversion and Normalization: we use
transforms. ToTensor() to convert raw PIL
images or NumPy arrays into PyTorch tensor
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format. This operation simultaneously scales
pixel values linearly from the original [0,255]
range to [0.0,1.0]. Subsequently, transforms.
Normalize(mean=[.5], std=[.5]) is applied for
standardization, adjusting the data distribution to
a standard normal distribution with a mean of 0
and a standard deviation of 1.
Medical Image Feature Adaptation: given the
consistent image dimensions within the
MedMNIST dataset, this pipeline omits
additional resizing operations. To preserve the
spatial relationships of critical diagnostic
features, and in consideration of the anatomical
structures inherent in medical images, random
geometric transformations are not employed[9].

3.5 Evaluation Metrics
This study utilizes Accuracy (ACC) and Area

Under the Receiver Operating Characteristic
Curve (AUC) as primary evaluation metrics.
ACC reflects the overall classification
correctness rate, while AUC assesses the model's
discriminative ability across various thresholds
by measuring the area under the ROC curve.

4. Experimental Results and Analysis
To evaluate the impact of incorporating attention
mechanisms on model performance, this study
conducted comparative experiments on three
representative medical image classification
datasets (PneumoniaMNIST, RetinaMNIST, and
OrganCMNIST). We compared the performance
of standard ResNet-18 with SE-ResNet18, which
integrates the Squeeze-and-Excitation (SE)
module, as shown in Table 2.

Table 2. Experimental Results
Model Dataset Validation AUC Validation ACC Test AUC Test ACC
ResNet-18 PneumoniaMNIST 0.99619 0.96947 0.95628 0.84615

RetinaMNIST 0.80527 0.55000 0.71044 0.50250
OrganCMNIST 0.99957 0.97241 0.99047 0.90082

ResNet-18
With SE

PneumoniaMNIST 0.99650 0.97328 0.95769 0.85692
RetinaMNIST 0.80940 0.56667 0.73053 0.55000
OrganCMNIST 0.99959 0.97810 0.98789 0.92173

4.1 PneumoniaMNIST
In terms of the AUC metric, the model
incorporating the SE module rapidly approaches
near-optimal performance in the early stages of
training. Both the validation and test AUC
curves converge around the 10th epoch and
remain consistently high with minimal
fluctuation, indicating strong stability and
reliability. This suggests that the attention
mechanism enables the model to more
effectively focus on key features, thereby
improving its ability to distinguish between
positive and negative samples. In contrast,
although the original ResNet18 architecture also
achieves relatively high AUC values, the curves
for both validation and test sets exhibit more
noticeable fluctuations throughout training,
implying weaker generalization capabilities, as
shown in Figure 4.
With regard to accuracy, the SE-enhanced model
likewise demonstrates a clear performance gain.
The test accuracy curve shows a significant
reduction in fluctuation and maintains a slightly
higher average level compared to the baseline
model, reflecting improved model robustness
and stability. Notably, the SE module appears to

mitigate the performance variance typically
introduced by feature redundancy or noise,
enhancing the model's ability to generalize to
unseen data, as shown in Figure 5.
Moreover, from the perspective of convergence
speed, the SE-based model reaches optimal
performance within just a few epochs, making
the training process more efficient. This outcome
highlights the advantage of channel attention
mechanisms, which dynamically recalibrate the
importance of different feature channels,
allowing the network to concentrate more
effectively on informative regions. As a result,
the representational capacity of the model is
significantly strengthened.

Figure 4. ResNet 18 in PneumoniaMNIST
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Figure 5. SeResNet 18 in PneumoniaMNIST

4.2 RetinaMNIST
From a performance standpoint, the model
incorporating the attention mechanism
demonstrates a noticeable improvement across
several key metrics. In the AUC curves, both the
validation and test AUC values in Figure 7 are
generally higher than those of the original
ResNet architecture (see Figure 6), with the
improvement particularly evident in the test
AUC. This indicates that the SE module
enhances the model's ability to extract
meaningful features and improves its capacity to
distinguish between positive and negative
samples. Similarly, in terms of accuracy (ACC),
although the test accuracy curve in Figure 7
shows greater fluctuation, both the peak values
and the average across epochs are higher
compared to the original model. This suggests an
overall gain in predictive accuracy[10].
However, in terms of training stability and
model robustness, the attention-enhanced model
exhibits more pronounced variability and
uncertainty. While the attention mechanism
strengthens feature flow by applying dynamic
channel-wise weights, it also increases the
model's sensitivity to noise, data inconsistencies,
and small perturbations during training. As a
result, the model achieves higher peak
performance, but it also becomes more
dependent on well-controlled training
conditions.

Figure 6. ResNet18 in RetinaMNIST

Figure 7. SeResNet18 in RetinaMNIST

Instability during training may stem from the
low sample size of the RetinaMNIST dataset and
potential category imbalance. With the
introduction of the SE attention module, the
model reweights the features, making the model
more susceptible to noise or a few category
samples when the sample size is insufficient,
thus exacerbating training fluctuations. In
addition, small sample datasets usually lack
sufficient feature diversity, which is not
conducive to deep models learning stable
representations with strong generalization ability
during training, especially in network
architectures that include dynamic feature
selection mechanisms[11].
To alleviate the above problems, future research
can improve in two directions: on the one hand,
data enhancement methods such as random
rotation, scaling transformation, brightness and
contrast adjustment, and Gaussian noise
injection can be used to extend the data diversity,
which can improve the model's generalization
ability and training stability to a certain extent.
On the other hand, the reduction rate of the SE
module can be adjusted at the network structure
level by reducing the default 16 to 8, thus
reducing the risk of overfitting during channel
compression and improving the stability and
robustness of the model on small data sets.

4.3 OrganMNIST
In terms of the AUC metric, the model
incorporating the SE module outperforms the
original ResNet on both the validation set (Val
AUC) and the test set (Test AUC), with the
curves appearing smoother and converging more
consistently, especially showing more
pronounced improvements on the test set.
Regarding the ACC metric, the SE-ResNet
achieves a higher overall level of test accuracy
(Test ACC), particularly demonstrating faster
convergence within the first 20 epochs and
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requiring less training time to reach a stable state,
as shown in Figure 8 and 9.

Figure 8. ResNet 18 in OrganMNIST

Figure 9. SeResNet 18 in OrganMNIST

5. Conclusion
This study systematically evaluated the
integration of the Squeeze-and-Excitation (SE)
attention mechanism into the ResNet-18 network
across three medical image datasets:
PneumoniaMNIST (binary classification),
RetinaMNIST (multi-class classification), and
OrganCMNIST (multi-label classification). The
experimental results demonstrated that
incorporating the SE module significantly
improved model performance, with superior
metrics in both AUC and accuracy (ACC)
compared to the baseline ResNet-18 model.
Particularly on the PneumoniaMNIST and
OrganCMNIST datasets, the SE mechanism
enabled the model to more effectively focus on
diagnostically relevant regions, resulting in more
stable classification performance. For the
RetinaMNIST dataset, while the SE model
achieved higher peak performance, it exhibited
greater training instability, suggesting that
fine-tuning the attention mechanism parameters
may be necessary for complex multi-class
classification tasks. Notably, SE-ResNet18
demonstrated faster convergence, typically
reaching near-optimal performance within 10-20
epochs, which can be attributed to the SE
module's ability to dynamically adjust channel

weights and facilitate more efficient learning of
discriminative features. The primary
contribution of this study lies in validating the
universal advantages of attention mechanisms in
medical image classification tasks, with
consistent performance improvements observed
across binary, multi-class, and multi-label
classification scenarios. However, the
experiments were limited to low-resolution
(28×28) grayscale images from MedMNIST, and
future work should extend validation to
higher-resolution multimodal medical images.
Additionally, comparative studies of other
attention mechanisms (e.g., CBAM, Non-Local
Networks) and testing on prospective clinical
data will be key directions for further research.
Overall, this study provides empirical evidence
supporting the application of attention
mechanisms in medical image analysis and lays
the foundation for developing more robust
intelligent diagnostic systems.
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