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Abstracts: With the rapid development of
industrial automation, industrial robots are
increasingly widely used in production lines,
and their stability and reliability are directly
related to production efficiency and cost. This
paper focuses on the research of intelligent
fault diagnosis and self-repair mechanism of
industrial robots, and constructs an intelligent
fault diagnosis model by comprehensively
using machine learning, sensor technology
and data fusion algorithm. Through
multi-source sensors to collect real-time robot
operation data, after feature extraction and
data preprocessing input model, to achieve
accurate diagnosis of faults. Meanwhile,
based on the diagnostic results, a self-repair
mechanism is designed, covering hardware
redundancy switching, software parameter
adaptive adjustment, and automatic
replacement strategy for faulty parts, which
effectively improves the robot's fault coping
ability and autonomous operation level, and
reduces the downtime. Experiments show that
the proposed method has a fault diagnosis
accuracy of 97.3% in typical industrial
scenarios, and the average repair response
time is shortened to 1.5 seconds, which
reduces the downtime loss by about 40%
compared with the traditional method, and
provides a strong guarantee for the continuity
and stability of industrial production.
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1. Introduction
With the rapid development of Industry 4.0 and
intelligent manufacturing, industrial robots, as
the core equipment of modern manufacturing,
have gradually expanded their application
scenarios from traditional automobile
manufacturing and electronic assembly to high
complexity fields such as logistics and handling,
precision machining, and medical production.

However, industrial robots have been in a
high-load, high-precision, high-dynamic
operating environment for a long time, and their
mechanical structure, drive system, control unit
and other key components are susceptible to
wear and tear, fatigue, environmental
interference and other factors, resulting in an
increase in the failure rate [1]. For example, a car
company welding production line using KUKA
KR1000 robot, 18 months of continuous
operation, the servo motor failure rate from 1
times a month to 4 times a month.
To address this phenomenon, the Shenyang
Institute of Automation, Chinese Academy of
Sciences, proposed a variable operating
condition fault diagnosis method for industrial
robots based on generative adversarial networks,
which effectively improves the generalization
capability of traditional data-driven fault
diagnosis algorithms for industrial robots.
Despite the progress of data-driven methods,
how to further improve the accuracy and
timeliness of fault diagnosis under complex
working conditions remains to be studied. For
example, in multi-sensor fusion data processing,
how to integrate data from different types of
sensors more effectively to realize
complementary and fusion of information, as
well as how to extract fault features more
precisely from massive data to achieve
high-accuracy fault recognition, are all problems
that need to be solved [2]. Once a fault occurs, it
will not only cause production line downtime
and economic loss, but also may lead to safety
accidents. Most of the current research on
self-repair mechanisms focuses on simple
parameter adjustment and resource
reconfiguration, with limited ability to repair
complex faults. The existing diagnostic methods
have a detection rate of less than 70% for
complex faults, and the self-repair response time
is more than 10 seconds. Therefore, it is
important to build a data-driven intelligent
diagnosis and self-repair closed-loop system to
realize the goals of "diagnosis accuracy >95%",
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"repair response time <5 seconds" and "manual
intervention rate <5%". To achieve the goal of
"diagnosis accuracy >95%", "repair response
time <5 seconds" and "manual intervention rate
<5%", to break through the limitations of the
traditional single-sensor diagnosis method, and
to realize the high-precision real-time detection
of complex faults of industrial robots has
become a key research direction to improve the
reliability of industrial robots and reduce the cost
of operation and maintenance.

2. Research Methods

2.1 Integrated Learning Algorithm
Integrated learning algorithm to enhance
classification robustness through multiple
decision tree voting mechanism[3], suitable for
small samples with unbalanced data.
(1) Single decision tree generation
Let the training set
D={(x(1) ,y1) ,(x(2) ,y2) ,...,(x(n) ,yn) }, where
xi∈ Rmis the feature vector and yi ∈ {1,2,...,K}
is the class drama label.
Feature Selection and Node Splitting:At node t,
mtrycandidate features are randomly selected

from m features (usually mtry= m ). The
optimal splitting point is selected by Gini
impurity or information gain. As shown in
formula (1):

Gini(t) = 1-



k

k
kp

1

2

(1)
where pkis the proportion of samples of class
drama k in node t.
(2) Random forest integrated prediction
Construct T decision trees and self-sampling to
generate subsets.
Randomly draw samples from the original data
one by one, and put the samples back to the
original dataset after each draw to ensure that the
sample may still be selected in subsequent
draws[7] .
Split nodes based on weighted Gini impurity.
The decision tree divides the data into two child
nodes by splitting the node, and the goal is to
select the optimal splitting feature and splitting
point so that the weighted Gini impurity of the
child node is minimized.
Step 1: Calculate the Gini impurity of the parent
node - Gparent
Step 2: Iterate over all candidate features and
split points

For each feature's possible split points (e.g.,
thresholds for numeric features, subsets of
category features), compute the Gini impurity of
the split left and right child nodes.
Step 3: Calculate the weighted Gini impurity
Sum the weighted Gini impurity according to the
sample size of child nodes. As shown in formula
(2):

Gsplit=
Gleft

N
N

parent

left

+


N
N

parent

right

Gright (2)
N parent

: total number of samples from father

nodes
NN rightleft , : number of left and right child node

samples
Select the features and split points that

minimizeGsplit , i.e., maximize the Gini impurity
drop. As shown in formula (3):

∆ G= GG splitparent  (3)
Majority voting integration.
For the test sample x, the prediction is: ŷ
=mode({h(1) (x),h(2) (x),. ,h(T) (x)}), where
ht(x) is the predicted output of the tth tree and
mode denotes the majority voting mechanism[8] .

2.2 Category Weight Processing Data
To cope with unbalanced data (e.g., large
differences in sample sizes of fault categories),
category weights are introduced:.
(1) Weight-adjusted loss function.

Define the cost matrix C∈R
KK

, where C(i) (j)
denotes the cost of misclassifying the true
category i as j. The weighted loss function is the
same as the weighted loss function. Optimize the
weighted Gini impurity at node splitting. As
shown in formula (4):

Weighted Gini(t)=



K

1k
kC
∙p(k) ∙(1-pk) (4)

where Ckis the misclassification cost weight for
category k (e.g., higher weights for minority
class failures).
Cost-sensitive voting mechanism:
The final classification result is determined by
weighted voting. As shown in formula (5):

ŷ = argmaxk
T

t
kC

1 -II(h(t) (x) = k) (5)

2.3 Control Theory and Self-Healing
Strategies
2.3.1 Redundant Control Theory and Hardware
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Fault Tolerance Mechanisms
N-mode redundancy [4]: By deploying multiple
hardware units with the same function (e.g., dual
motor drives, three power supplies), the faulty
module outputs are shielded using a majority
voting mechanism.
Hot backup: the backup module synchronizes
the main module status in real time, and the
switching delay is as low as milliseconds (the
switching time of the joint drive unit is ≤0.5
seconds).
Cold backup: the backup module is in dormant
state and needs to be initialized when starting up,
applicable to non-critical components.
Modular joint redundancy architecture.
The main drive motor (M1) and the backup
motor (M2) are connected in parallel via a clutch,

and the torque sensor monitors the M1 output in
real time. When abnormal torque (e.g. blocking,
overheating) is detected in M1, the control
system triggers the clutch to disengage M1 and
activate M2 to take over the load.
Dynamic Load Balancing: During normal
operation, M1 takes over 80% of the load and
M2 takes over 20% of the load to extend the life
of the dual motors.
Mathematical modeling:
Redundant system reliability
RsystemCalculation. As shown in formula (6):

Rsystem= R(primary) +(1-Rprimary)∙R(backup) (6)
where R(primary) Rbackupis the primary and
backup module reliability with a target value of
Rsystem ≥ 0.999, as shown in Figure 1.

Figure 1. Reliability Comparison
2.3.2 Model predictive control (MPC) with
parameter adaptation
Rolling-time optimization: solving the optimal
control sequence in a finite time domain at each
control cycle, only the first step is executed, and
dynamically coping with system uncertainty.
State space modeling: Model the robot joint
dynamics. As shown in formula (7):

 = M(q)
..
q +C(q, )

.
q

.
q +G(q)+Ffriction (7)

where q is the joint angle, M is the inertia matrix,
C is the Koch force and G is the gravity term.
Parameter Adaptation under Faults.

When the sensor detects a gear lash fault, the
MPC controller dynamically adjusts the M(q)
and F(f) (riction) parameters in the model.
Objective function optimization [7]. As shown in
formula (8):

minƮ
      2

2N

1
kkqk

k
refq 

 (8)
where  is the control quantity weight to
suppress the sudden change of torque due to
faults. Deploying linear MPC (LMPC) on the
edge computing unit [5] compresses the solution
time to within 10ms[9], as shown in Table 1.

Table 1. Linear Model Prediction Control Analysis
Loop Input Output Next session condition Next session
A start - Raw Data Data Monitoring B Data Monitoring

B Data Monitoring Sensor/Log
Streaming Raw Data Anomaly Detection C Anomaly

Detection

CAnomaly Detection Raw Data Anomaly marker Yes (with anomaly) D Data
preprocessing

CAnomaly Detection Raw data Anomaly Flagging No (no anomaly) B Data Monitoring

D Data Preprocessing Anomalous Data Cleaned Data Feature Engineering E Feature
Engineering

E Feature Engineering Cleaned Data Feature vector Fault Diagnosis F Fault Diagnosis
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F Fault Diagnosis Eigenvector Fault Type Knowledge Base Query G Knowledge Base
Query

G Knowledge Base
Query Fault Type Repair Solution Strategy Evaluation H Strategy

Evaluation

H Strategy Evaluation Remediation
Options Risk Assessment Safe and Feasible I Safe and Feasible

I Safe and Feasible Risk Assessment Decision-making Yes (feasible) J Perform Repair
I Safe and Feasible Risk Assessment Decision-making No (not feasible) K Manual Alert

J Execute Repair Remediation
Instructions Execution Status Effectiveness Verification L Effect Verification

K Manual Warning Diagnostic Report Alarm Notification Manual Processing QManual Processing

Q Manual Handling Fault Details Repair Report Knowledge Update NUpdate
Knowledge Base

L Effectiveness
Verification New System Status Repair Results Failure Release M Failure Release

M Failure Release Repair Result Verification
Conclusion Yes (disarmed) N Update

knowledge base

M Failure Uninstalled Repair Result Verification
Conclusion No (not lifted) O Policy

Optimization
N Update Knowledge

Base Success Stories Knowledge
Increment Record Audit P Record Audit

O Strategy
Optimization Failure Feedback New Programs Execute Fix J Execution Fix

P Record Audit Complete Records Event Log Data Monitoring B Data Monitoring
Table 2. Hierarchical Architecture Analysis

Layers Technical Means Response time Applicable Scenarios
Hardware
layer

Redundant module switching, mechanical
quick-change ≤1 second Motor failure, power

interruption
Software
layer

MPC parameter adjustment, trajectory
reprogramming ≤5 seconds Sensor drift, sudden load

change
Mechanical
layer

End-effector quick-change, connecting rod
replacement ≤30 seconds Mechanical breakage, joint

jamming
2.3.3 Multi-Level Remediation Policy
Collaboration Mechanisms
Policy Architecture, as shown in Table 2.
The policy decision engine selects repair
methods based on predefined rules and
reinforcement learning strategies:
If the confidence level is >90% and it is a
hardware failure, redundant switching will be
triggered directly.
If the confidence level is 70%-90%, start
software compensation and synchronize manual
confirmation.
After repair, verify the validity through vibration

spectrum analysis and current waveform, and
upgrade to a higher-level strategy if it fails.
Experimental Verification and Performance
Indicators, as shown in Table 3.
Test platform:
Physical system: ABB IRB 6700 industrial robot
equipped with six-dimensional force sensors,
vibration accelerometers, and infrared thermal
cameras.
Digital twin: ROS-Gazebo simulation
environment, real-time synchronization with the
physical system via OPC UA protocol.

Table 3. Key Indicators

Indicators Traditional manual
restoration

Methodology of this paper
(target)

Validation
results

Mean Time to Repair (MTTR) 45 minutes ≤8 minutes 6.2 minutes
Secondary failure rate 15% ≤5 3.8%
False repair rate due to misjudgment 10% ≤5% 3 ≤2 1.5%

3 Experimental Results andAnalysis

3.1 Case Background

This study aims to construct a set of intelligent
fault diagnosis and autonomous repair system
for industrial robots, which breaks through the
bottleneck of traditional methods in complex
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fault detection (e.g., coupling faults, intermittent
faults), small-sample data modeling and repair
efficiency through fusion of multi-source sensor
data, improvement of the robustness of machine
learning models, and synergistic multilevel
repair strategies, and ultimately achieves
high-precision real-time diagnosis; reliable
classification under non-equilibrium data; and
fast self-repair with low human dependence.
classification; and fast self-repair with low labor
dependence.
The research chooses the integrated learning
algorithm, which combines the prediction results
of multiple base learners and uses "group
intelligence" to improve the generalization
performance of the model, including the random
forest model, etc. In complex scenarios such as
the fusion of heterogeneous data from multiple
sources and the adaptation of dynamic
environments, the idea of
"partitioning-integration" provides a good basis
for the subsequent research. The idea of
"partition-integration" provides a scalable basic
framework for subsequent research. In industrial
fault diagnosis, data imbalance (e.g., far more

normal samples than fault samples) is the core
challenge, and the introduction of category
weights can significantly optimize the model
performance[10] . In this study, this algorithm is
not only the technical backbone for realizing
high-precision fault classification, but also the
key vehicle for verifying the theoretical
assumption of "small sample-high reliability" [6].

3.2 Diagnostic Performance of Multi-source
Data Fusion
For ABB IRB 6700 robot, 6 types of compound
faults (e.g. bearing wear + motor winding short
circuit) are injected, as shown in Table 4.

3.3 Small Sample Classification Model
Performance
Dataset: PHM Challenge 2015 bearing fault data
(4 classes of faults, 50 samples per class) +
synthetic small sample set (10 samples per class),
as shown in Table 5.
Comparison models: SVM, standard RF, CS-RF,
CS-GA-RF (this paper), as shown in Table 6.
Generalizability testing (cross-device data
migration)

Table 4. Key Results
Indicator VS KF WDF (this paper)
Diagnostic accuracy (%) 82.3 88.7 96.5
Response time (sec) 1.2 2.8 1.8
Composite Fault Detection Rate 41.2% 67.5% Composite Fault Detection Rate 92.8

Table 5. Parameter ConfigurationAnalysis
Parameter Configuration value
Selected fault types Normal state, inner ring failure, outer ring failure, ball failure
Total number of samples 4 types× 50 samples = 200 samples

Operating conditions
Uniform coverage of 4 operating conditions:
900RPM/0.7Nm,1500RPM/0.7Nm,
900RPM/2.1Nm,1500RPM/2.1Nm

Sample Structure Each sample = 1 second of vibration data (100,000) sampling points
Sensor Channels Main accelerometer channels

Table 6. Standard RF, CS-GA-RFModel
Comparison and Analysis

Models Source domain
accuracy

Target Domain
Accuracy

CS-GA-RF 94.1% 89.3
Standard RF 85.2 76.8%

3.4 Self-healing Strategy Effectiveness
Fault types: motor overload (hardware layer),
visual localization drift (software layer), joint
gear chipping (mechanical layer).
Comparison benchmarks: traditional manual
repair, rule engine (threshold trigger).

Table 7. Analysis of Key Results
Indicators Manual Repair Rule engine Methodology

Mean Time to Repair (MTTR) 42 minutes 15 minutes 6.2 minutes
Secondary failure rate 12% 8 percent 3.5%

False repair rate 18% (for the first time) 11% Failure to
Repair Rate 1.2 percent

SystemAvailability Improvement -Increase in SystemAvailability +23% +67%
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The results in Table 7 show that in tasks such as
bearing fault diagnosis and motor anomaly
detection, the accuracy is generally higher than
that of traditional methods such as logistic
regression and single decision tree (measured
improvement of 15%~30%). In industrial
intelligent systems, the ternary fusion of
integrated learning + category weighting +
redundant control achieves: fairer categorization
decisions, higher-order system fault tolerance,
and lower overall O&M costs. This framework
provides theoretical support and technical
landing path for reliable diagnosis and
self-healing in complex industrial environments.

4. Conclusion
Through spatio-temporal alignment and
reliability weight assignment, the accuracy of
composite fault diagnosis is improved to 96.5%
(≥8.2% compared with the traditional method),
and the response time is stabilized within 2
seconds, which verifies the necessity of
collaborative sensing of multimodal data. In
small-sample and unbalanced data modeling,
cost-sensitive genetic stochastic Sen (CS-GA-RF)
achieves 94.1% classification accuracy in
small-sample scenarios through category weight
adjustment and hyperparameter optimization,
with cross-equipment generalization error
controlled within 10%, proving its strong
robustness under industrial data defects. For the
system-level multi-source fusion design,
combining data alignment, feature fusion and
dynamic decision optimization, it can
significantly reduce the misclassification rate
(from 5.2% to 1.5%), and achieve high-precision
and high-robustness intelligent decision-making
in complex scenarios. In the future, real-time,
interpretability and privacy issues need to be
further addressed to promote
multi-source fusion technology in more critical
areas.
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