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Abstracts: With the rapid development of
industrial automation, industrial robots are
increasingly widely used in production lines,
and their stability and reliability are directly
related to production efficiency and cost. This
paper focuses on the research of intelligent
fault diagnosis and self-repair mechanism of
industrial robots, and constructs an intelligent
fault diagnosis model by comprehensively
using machine learning, sensor technology
and data fusion algorithm. Through
multi-source sensors to collect real-time robot
operation data, after feature extraction and
data preprocessing input model, to achieve
accurate diagnosis of faults. Meanwhile,
based on the diagnostic results, a self-repair
mechanism is designed, covering hardware
redundancy switching, software parameter
adaptive  adjustment, and  automatic
replacement strategy for faulty parts, which
effectively improves the robot's fault coping
ability and autonomous operation level, and
reduces the downtime. Experiments show that
the proposed method has a fault diagnosis
accuracy of 97.3% in typical industrial
scenarios, and the average repair response
time is shortened to 1.5 seconds, which
reduces the downtime loss by about 40%
compared with the traditional method, and
provides a strong guarantee for the continuity
and stability of industrial production.
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1. Introduction

With the rapid development of Industry 4.0 and
intelligent manufacturing, industrial robots, as
the core equipment of modern manufacturing,
have gradually expanded their application
scenarios from traditional automobile
manufacturing and electronic assembly to high
complexity fields such as logistics and handling,
precision machining, and medical production.

200

However, industrial robots have been in a
high-load, high-precision, high-dynamic
operating environment for a long time, and their
mechanical structure, drive system, control unit
and other key components are susceptible to
wear and tear, fatigue, environmental
interference and other factors, resulting in an
increase in the failure rate ['1. For example, a car
company welding production line using KUKA
KR1000 robot, 18 months of continuous
operation, the servo motor failure rate from 1
times a month to 4 times a month.

To address this phenomenon, the Shenyang
Institute of Automation, Chinese Academy of
Sciences, proposed a variable operating
condition fault diagnosis method for industrial
robots based on generative adversarial networks,
which effectively improves the generalization
capability of traditional data-driven fault
diagnosis algorithms for industrial robots.
Despite the progress of data-driven methods,
how to further improve the accuracy and
timeliness of fault diagnosis under complex
working conditions remains to be studied. For
example, in multi-sensor fusion data processing,
how to integrate data from different types of
sensors  more  effectively to  realize
complementary and fusion of information, as
well as how to extract fault features more
precisely from massive data to achieve
high-accuracy fault recognition, are all problems
that need to be solved . Once a fault occurs, it
will not only cause production line downtime
and economic loss, but also may lead to safety
accidents. Most of the current research on
self-repair mechanisms focuses on simple
parameter adjustment and resource
reconfiguration, with limited ability to repair
complex faults. The existing diagnostic methods
have a detection rate of less than 70% for
complex faults, and the self-repair response time
1s more than 10 seconds. Therefore, it is
important to build a data-driven intelligent
diagnosis and self-repair closed-loop system to
realize the goals of "diagnosis accuracy >95%",
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"repair response time <5 seconds" and "manual
intervention rate <5%". To achieve the goal of
"diagnosis accuracy >95%", "repair response
time <5 seconds" and "manual intervention rate
<5%", to break through the limitations of the
traditional single-sensor diagnosis method, and
to realize the high-precision real-time detection
of complex faults of industrial robots has
become a key research direction to improve the
reliability of industrial robots and reduce the cost
of operation and maintenance.

2. Research Methods

2.1 Integrated Learning Algorithm
Integrated learning algorithm to enhance
classification robustness through multiple
decision tree voting mechanisml®), suitable for
small samples with unbalanced data.
(1) Single decision tree generation
Let the training set
D={(x(1) ,y1) ,(x(2) ,y2) ,...,(x(n) ,yn) }, where
xi € Rmis the feature vector and yi € {1,2,....K}
is the class drama label.

Feature Selection and Node Splitting: At node t,
mtrycandidate features are randomly selected

from m features (usually mtry= \/E ). The
optimal splitting point is selected by Gini
impurity or information gain. As shown in

formula (1):
k

> pi

Gini(t) = 1- *=1 (1)
where pkis the proportion of samples of class
drama k in node t.
(2) Random forest integrated prediction
Construct T decision trees and self-sampling to
generate subsets.
Randomly draw samples from the original data
one by one, and put the samples back to the
original dataset after each draw to ensure that the
sample may still be selected in subsequent
draws!7l .
Split nodes based on weighted Gini impurity.
The decision tree divides the data into two child
nodes by splitting the node, and the goal is to
select the optimal splitting feature and splitting
point so that the weighted Gini impurity of the
child node is minimized.
Step 1: Calculate the Gini impurity of the parent
node - Gparent
Step 2: Iterate over all candidate features and
split points
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For each feature's possible split points (e.g.,
thresholds for numeric features, subsets of
category features), compute the Gini impurity of
the split left and right child nodes.
Step 3: Calculate the weighted Gini impurity
Sum the weighted Gini impurity according to the
sample size of child nodes. As shown in formula
(2):
Nis

Gsplit=Nrwen

total number of samples from father

N right .
+ N parent Grighl (2)

’ Gh{/t

|\

nodes

N N : number of left and right child node
samples

Select the features and split points that
minimize G , 1.e., maximize the Gini impurity

drop. As shown in formula (3):

A G: G parent - Gsp/it
Majority voting integration.
For the test sample x, the prediction is: p
=mode({h(1) (x),h(2) (x),. ,h(T) (x)}), where
ht(x) is the predicted output of the tth tree and
mode denotes the majority voting mechanism!®! .

3

2.2 Category Weight Processing Data

To cope with unbalanced data (e.g., large
differences in sample sizes of fault categories),
category weights are introduced:.

(1) Weight-adjusted loss function.

KxK

Define the cost matrix C € R , where C(i) (j)
denotes the cost of misclassifying the true

category i as j. The weighted loss function is the

same as the weighted loss function. Optimize the

weighted Gini impurity at node splitting. As

shown in formula (4):

K

k

Weighted Gini(t)= k=! pk) -(1-pk)  (4)
where Ckis the misclassification cost weight for
category k (e.g., higher weights for minority
class failures).
Cost-sensitive voting mechanism:
The final classification result is determined by
weighted voting. As shown in formula (5):

= argmaxk=C I(ht) ) =k) (5
2.3 Control

Strategies
2.3.1 Redundant Control Theory and Hardware

Theory and Self-Healing
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Fault Tolerance Mechanisms

N-mode redundancy [4]: By deploying multiple
hardware units with the same function (e.g., dual
motor drives, three power supplies), the faulty
module outputs are shielded using a majority
voting mechanism.

Hot backup: the backup module synchronizes
the main module status in real time, and the
switching delay is as low as milliseconds (the
switching time of the joint drive unit is <0.5
seconds).

Cold backup: the backup module is in dormant
state and needs to be initialized when starting up,
applicable to non-critical components.

Modular joint redundancy architecture.

The main drive motor (M1) and the backup
motor (M2) are connected in parallel via a clutch,
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and the torque sensor monitors the M1 output in
real time. When abnormal torque (e.g. blocking,
overheating) is detected in M1, the control
system triggers the clutch to disengage M1 and
activate M2 to take over the load.
Dynamic Load Balancing: During normal
operation, M1 takes over 80% of the load and
M2 takes over 20% of the load to extend the life
of the dual motors.
Mathematical modeling:
Redundant system reliability
RsystemCalculation. As shown in formula (6):
Rsystem= R(primary) +(1-Rprimary)-R(backup)  (6)
where R(primary) Rbackupis the primary and
backup module reliability with a target value of
Rsystem > 0.999, as shown in Figure 1.
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Figure 1. Reliability Comparison

2.3.2 Model predictive control (MPC) with
parameter adaptation

Rolling-time optimization: solving the optimal
control sequence in a finite time domain at each
control cycle, only the first step is executed, and
dynamically coping with system uncertainty.
State space modeling: Model the robot joint
dynamics. As shown in formula (7):

T=M(q¥? +C(q,)? 9 +G(q)+Ffriction (7)
where q is the joint angle, M is the inertia matrix,
C is the Koch force and G is the gravity term.
Parameter Adaptation under Faults.

When the sensor detects a gear lash fault, the
MPC controller dynamically adjusts the M(q)
and F(f) (riction) parameters in the model.
Objective function optimization [7]. As shown in
formula (8):

N 2

> g, (0)-q)] + 2ty

minT !

®
where 4 is the control quantity weight to
suppress the sudden change of torque due to
faults. Deploying linear MPC (LMPC) on the
edge computing unit [5] compresses the solution
time to within 10ms®, as shown in Table 1.

Table 1. Linear Model Prediction Control Analysis

Loop Input Output Next session condition Next session
A start - Raw Data Data Monitoring B Data Monitoring
B Data Monitoring Sensor/Log Raw Data Anomaly Detection C Anomaly
Streaming Detection
C Anomaly Detection Raw Data Anomaly marker Yes (with anomaly) D Data’
preprocessing
C Anomaly Detection Raw data Anomaly Flagging No (no anomaly) B Data Monitoring
D Data Preprocessing | Anomalous Data Cleaned Data Feature Engineering E Feat“?e
Engineering
E Feature Engineering|  Cleaned Data Feature vector Fault Diagnosis F Fault Diagnosis
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F Fault Diagnosis Eigenvector Fault Type Knowledge Base Query G Knogll;cli’ge Base
G Knowledge Base . . . H Strategy
Query Fault Type Repair Solution Strategy Evaluation Evaluation
H Strategy Evaluation Reglpetcil(l)zilt;on Risk Assessment Safe and Feasible I Safe and Feasible
I Safe and Feasible | Risk Assessment | Decision-making Yes (feasible) J Perform Repair
I Safe and Feasible | Risk Assessment | Decision-making No (not feasible) K Manual Alert
J Execute Repair Remedlz.ltlon Execution Status |Effectiveness Verification|L Effect Verification
Instructions

K Manual Warning | Diagnostic Report | Alarm Notification Manual Processing  |QManual Processing
. . . NUpdate
Q Manual Handling Fault Details Repair Report Knowledge Update Knowledge Base
L Effjcctlve.ness New System Status | Repair Results Failure Release M Failure Release
Verification
. . Verification . N Update
M Failure Release Repair Result Conclusion Yes (disarmed) knowledge base
M Failure Uninstalled| Repair Result Verlﬁcat} on No (not lifted) O.P(.)hcy
Conclusion Optimization
N Update Knowledge Success Stories Knowledge Record Audit P Record Audit
Base Increment
o Sugtegy Failure Feedback New Programs Execute Fix J Execution Fix
Optimization
P Record Audit Complete Records Event Log Data Monitoring B Data Monitoring
Table 2. Hierarchical Architecture Analysis
Layers Technical Means Response time |Applicable Scenarios
Hardware [Redundant module switching, mechanical 1 second Motor failure, power|
layer quick-change B interruption
Software [MPC parameter adjustment, trajectory| 5 seconds Sensor drift, sudden load
layer reprogramming B change
Mechanical [End-effector quick-change, connecting rod 30 seconds Mechanical breakage, joint
layer replacement B jamming
2.3.3  Multi-Level  Remediation  Policy spectrum analysis and current waveform, and
Collaboration Mechanisms upgrade to a higher-level strategy if it fails.
Policy Architecture, as shown in Table 2. Experimental Verification and Performance
The policy decision engine selects repair  Indicators, as shown in Table 3.

methods based on predefined rules and
reinforcement learning strategies:

If the confidence level is >90% and it is a
hardware failure, redundant switching will be
triggered directly.

If the confidence level is 70%-90%, start
software compensation and synchronize manual
confirmation.

After repair, verify the validity through vibration

Test platform:

Physical system: ABB IRB 6700 industrial robot
equipped with six-dimensional force sensors,
vibration accelerometers, and infrared thermal
cameras.

Digital  twin:  ROS-Gazebo  simulation
environment, real-time synchronization with the
physical system via OPC UA protocol.

Table 3. Key Indicators
. Traditional manualMethodology of this paperValidation
Indicators .
restoration (target) results
Mean Time to Repair (MTTR) 45 minutes <8 minutes 6.2 minutes
Secondary failure rate 15% <5 3.8%
False repair rate due to misjudgment|10% <5% 3 <2 1.5%

3 Experimental Results and Analysis

3.1 Case Background
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This study aims to construct a set of intelligent
fault diagnosis and autonomous repair system
for industrial robots, which breaks through the
bottleneck of traditional methods in complex
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fault detection (e.g., coupling faults, intermittent
faults), small-sample data modeling and repair
efficiency through fusion of multi-source sensor
data, improvement of the robustness of machine
learning models, and synergistic multilevel
repair strategies, and ultimately achieves
high-precision real-time diagnosis; reliable
classification under non-equilibrium data; and
fast self-repair with low human dependence.
classification; and fast self-repair with low labor
dependence.

The research chooses the integrated learning
algorithm, which combines the prediction results
of multiple base learners and uses "group
intelligence" to improve the generalization
performance of the model, including the random
forest model, etc. In complex scenarios such as
the fusion of heterogeneous data from multiple
sources and the adaptation of dynamic
environments, the idea of
"partitioning-integration" provides a good basis
for the subsequent research. The idea of
"partition-integration" provides a scalable basic
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normal samples than fault samples) is the core
challenge, and the introduction of category
weights can significantly optimize the model
performance[10] . In this study, this algorithm is
not only the technical backbone for realizing
high-precision fault classification, but also the
key wvehicle for wverifying the theoretical
assumption of "small sample-high reliability" [6].

3.2 Diagnostic Performance of Multi-source
Data Fusion

For ABB IRB 6700 robot, 6 types of compound
faults (e.g. bearing wear + motor winding short
circuit) are injected, as shown in Table 4.

3.3 Small
Performance
Dataset: PHM Challenge 2015 bearing fault data
(4 classes of faults, 50 samples per class) +
synthetic small sample set (10 samples per class),
as shown in Table 5.

Comparison models: SVM, standard RF, CS-RF,
CS-GA-RF (this paper), as shown in Table 6.

Sample Classification Model

framework for subsequent research. In industrial Generalizability testing (cross-device data
fault diagnosis, data imbalance (e.g., far more migration)

Table 4. Key Results
Indicator VS [KF IWDF (this paper)
Diagnostic accuracy (%) 82.3 |88.7 96.5
IResponse time (sec) 1.2 2.8 1.8
Composite Fault Detection Rate  41.2%67.5% Composite Fault Detection Rate  [92.8

Table 5. Parameter Configuration Analysis

IParameter Configuration value

Selected fault types

Normal state, inner ring failure, outer ring failure, ball failure

Total number of samples

4 typesx 50 samples = 200 samples

Operating conditions

Uniform coverage of 4 operating conditions:
900RPM/0.7Nm,1500RPM/0.7Nm,
900RPM/2.1Nm,1500RPM/2.1Nm

Sample Structure

[Each sample = 1 second of vibration data (100,000) sampling points

Sensor Channels

Main accelerometer channels

Table 6. Standard RF, CS-GA-RF Model
Comparison and Analysis

Models Source domainTarget = Domain|
accuracy Accuracy

CS-GA-RF 94.1% R0 3

Standard RF [85.2 76.8%

3.4 Self-healing Strategy Effectiveness

Fault types: motor overload (hardware layer),
visual localization drift (software layer), joint
gear chipping (mechanical layer).

Comparison benchmarks: traditional manual
repair, rule engine (threshold trigger).

Table 7. Analysis of Key Results

Indicators Manual Repair Rule engine Methodology
Mean Time to Repair (MTTR) 42 minutes 15 minutes 6.2 minutes
Secondary failure rate 12% 8 percent 3.5%
. . 11% Failure to
0,
False repair rate 18% (for the first time) Repair Rate 1.2 percent
System Availability Improvement|-Increase in System Availability +23% +67%
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The results in Table 7 show that in tasks such as
bearing fault diagnosis and motor anomaly
detection, the accuracy is generally higher than
that of traditional methods such as logistic
regression and single decision tree (measured
improvement of 15%~30%). In industrial
intelligent systems, the ternary fusion of
integrated learning + category weighting +
redundant control achieves: fairer categorization
decisions, higher-order system fault tolerance,
and lower overall O&M costs. This framework
provides theoretical support and technical
landing path for reliable diagnosis and
self-healing in complex industrial environments.

4. Conclusion

Through  spatio-temporal  alignment and
reliability weight assignment, the accuracy of
composite fault diagnosis is improved to 96.5%
(>8.2% compared with the traditional method),
and the response time is stabilized within 2
seconds, which verifies the necessity of
collaborative sensing of multimodal data. In
small-sample and unbalanced data modeling,
cost-sensitive genetic stochastic Sen (CS-GA-RF)
achieves 94.1% classification accuracy in
small-sample scenarios through category weight
adjustment and hyperparameter optimization,
with  cross-equipment generalization error
controlled within 10%, proving its strong
robustness under industrial data defects. For the
system-level  multi-source  fusion  design,
combining data alignment, feature fusion and
dynamic decision optimization, it can
significantly reduce the misclassification rate
(from 5.2% to 1.5%), and achieve high-precision
and high-robustness intelligent decision-making
in complex scenarios. In the future, real-time,
interpretability and privacy issues need to be
further addressed to promote

multi-source fusion technology in more critical
areas.
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