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Abstract: Conventional speech emotion
identification techniques depend on manually
crafted acoustic features and superficial
classifiers, resulting in restricted feature
representation abilities and inadequate model
generalization. This research develops a
speech emotion recognition model that
integrates bidirectional long short-term
memory (LSTM) networks with attention
mechanisms. The model initially extracts
multidimensional acoustic properties from
speech data, such as MFCC, Mel-spectrum,
and spectral centroid. It subsequently
employs a bidirectional LSTM layer to
record contextual dependencies inside speech
sequences and integrates an attention
mechanism to emphasize emotion-critical
portions. A multi-task learning framework is
established to concurrently identify emotion
categories, speech pace, and volume.
Experiments indicate that the suggested
model attains a validation accuracy of
95.28% across five emotion detection tests,
surpassing SVM, LSTM, and Bi-LSTM
models. This study presents a feasible
approach for speech emotion recognition in
complex environments and is instrumental in
enhancing the emotional comprehension
capabilities of human-computer interaction
systems.
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1. Introduction
Speech functions as a fundamental medium for
conveying emotion, and its extensive linguistic
data has considerable ramifications for
enhancing human-computer connection [1].
Speech emotion recognition utilizes computer
models to autonomously assess emotional states
in speech, establishing itself as a crucial

research avenue in affective computing. It
exhibits extensive application potential in
contexts such as intelligent customer service,
remote psychological evaluation, and
customized entertainment systems [2].
Initially, speech emotion recognition research
depended on manually crafted acoustic features,
including fundamental frequency, energy,
speech rate, and various prosodic and spectral
features such as MFCC, in conjunction with
conventional machine learning algorithms like
support vector machines [3]. Although these
methodologies yielded certain advancements,
their efficacy was significantly contingent upon
the caliber of feature engineering. Furthermore,
the constrained expressive capacity of manually
crafted features led to inadequate generalization
abilities across various speakers and contexts [4].
In recent years, deep learning methodologies
have yielded significant advancements in voice
emotion recognition [5]. Recurrent neural
networks and their enhanced variations, long
short-term memory (LSTM) networks, have
attracted interest for their proficiency in
modeling the temporal attributes of speech
signals [6]. Standard LSTMs, however, can only
process sequence information unidirectionally,
so they fail to fully leverage the overall context
of speech. Bidirectional LSTMs thoroughly
capture temporal patterns in speech by
concurrently analyzing input from both
preceding and subsequent time steps [7].
Moreover, studies demonstrate that various
portions of speech contribute differently to
emotional expression. Inspired by attention
mechanisms in cognitive science, the ability of
models to autonomously concentrate on
emotionally salient parts has demonstrated
efficacy in improving recognition performance
[8].
Despite previous research validating the efficacy
of LSTMs and attention mechanisms,
opportunities for enhancement persist in several
domains: Primarily, the sufficiency of feature
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extraction, since a singular feature type fails to
comprehensively encapsulate intricate emotional
data [9]. The modeling capacity for long-term
sequence relationships requires enhancement [5].
The model's generalization performance
necessitates additional improvement [10]. This
study proposes a model for identifying speech
emotions that incorporates multidimensional
acoustic characteristics, bidirectional LSTMs,
and attention processes to tackle these issues.
This study's primary contributions include the
invention of a multidimensional feature
extraction module that effectively employs
characteristics such as MFCC, Mel-spectrum,
and spectral centroid to enhance the
representation of emotional information.
Secondly, an attention mechanism is
incorporated into the bidirectional LSTM to
significantly augment the model's feature
extraction ability, maintaining comprehensive
contextual information while emphasizing
critical emotional segments. A multi-task
learning method is integrated to enhance the
model's generalization capability by
concurrently learning interrelated tasks,
including emotion, speech rate, and volume.

2. Theoretical Framework and Model
Foundations

2.1 Bidirectional Long Short-Term Memory
Network
In speech emotion recognition tasks, a thorough
comprehension of the emotional content of
speech signals frequently necessitates contextual
information from both prior and subsequent
segments [7]. Conventional unidirectional Long
Short-Term Memory (LSTM) networks are
limited to sequentially capturing historical
information from the past to the present,
neglecting the incorporation of future contextual
information. This shortcoming is a considerable
impediment in speech emotion analysis.
The bidirectional long short-term memory
network (Bi-LSTM) ingeniously integrates two
independently functioning LSTM layers to
proficiently tackle this issue [7]. One LSTM
layer analyzes the sequence in a forward
direction along the temporal axis, capturing
previous dependencies, while the other analyzes
the sequence in reverse to obtain future
contextual information. This bidirectional
processing approach allows the network to
acquire a comprehensive contextual

representation at every time step.
The essence of Bi-LSTM is in its intricate
gating mechanism. Each LSTM unit
meticulously manages information using three
gate structures: the forget gate ascertains the
retention degree of historical data, with its
output

�� = �(�� ⋅ [ℎ�−1, ��] + ��) (1)
The forget gate's output varies between 0 and 1,
governing how much of the prior cell state is
disregarded; the input gate modulates the intake
of fresh information by

��� = �(�� ⋅ [ℎ�−1, ��] + ��) (2)
evaluating the extent of information
modification, followed by integration.

��� = tanh ( �� ⋅ [ℎ�−1, ��] + ��) (3)
The output gate regulates the generation of
candidate states.

�� = �(�� ⋅ [ℎ�−1, ��] + ��) (4)
governs the ultimate output information
quantity.
In the Bi-LSTM architecture, the comprehensive
hidden state at each time step t is formed by
concatenating the forward hidden state ht��� and
the backward hidden state ht����.

ℎ� = [ℎ���� ; ℎ����] (5)
This bidirectional feature fusion approach
allows the model to concurrently analyze both
the historical development and future
trajectories of speech signals in sentiment
analysis, thus enhancing the precision of
emotional state progression capture. The
Bi-LSTM can identify minor emotional nuances
in segments with sudden shifts or slow
sentiment changes due to its bidirectional
information flow; hence, it considerably
improves identification performance.

2.2 Attention Mechanism
Drawing from human visual attention
mechanisms, attention techniques in deep
learning allow models to autonomously
concentrate on task-relevant segments
throughout the processing of sequential data. In
speech emotion recognition, different speech
frames at varying time intervals significantly
influence sentiment expression. Attention
processes proficiently discern these pivotal
frames and allocate greater weights [8].
In practical applications, we analyze the hidden
state sequence produced by the Bi-LSTM.

� = {ℎ1, ℎ2, . . . , ℎ�} (6)
Initially, we calculate
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�� = �� tanh ( �ℎ� + �) (7)
Compute the attention score at each point,
where W, b, and v are parameters subject to
training. The scores are subsequently adjusted
into a weight distribution using the softmax
algorithm.

�� = exp ( ��)

�=1
� exp (� ��)

(8)

A weighted sum produces the context vector.
� = �=1

� ��� ℎ� (9)
This vector embodies the prominent emotional
characteristics throughout the entire sequence.

2.3 Multi-Task Learning
Multi-task learning improves model
generalization by concurrently training
numerous related tasks within a single model,
utilizing correlations across tasks [10]. Speech
emotion recognition intricately links
paralinguistic variables like speech tempo and
volume to emotional states. Considering these
features as auxiliary tasks promotes the model's

acquisition of more distinct shared feature
representations.
The primary benefit of this method is its ability
to avert model overfitting via cross-task
regularization effects. When the model
concurrently optimizes various objectives—such
as emotion classification, speech rate
recognition, and volume estimation—shared
layers are necessitated to acquire universal
characteristics advantageous for all tasks. This
enhances the fundamental emotion recognition
task's reliability and precision.

3. Design of the BiLSTM-ATT-Based Speech
Emotion Recognition Model
This chapter outlines the architecture of the
proposed speech emotion recognition model.
Figure 1 illustrates that the model consists of
four fundamental components: data
preprocessing and feature extraction,
bidirectional LSTM temporal modeling,
attention mechanism, and multi-task
classification output.

Figure 1. BiLSTM-ATT-based Speech Emotion Recognition Model

3.1 Feature Extraction and Data
Preprocessing
This work develops a multidimensional acoustic
feature extraction approach to thoroughly define
emotional information in speech. The first step
is to prepare the raw voice stream for processing.
All audio samples are consistently resampled to
a 22.05 kHz sampling rate and converted to
mono formats to maintain uniformity in data
entry. Framing utilizes a Hamming window with
a frame duration of 25 ms and a frame shift of
10 ms to optimize temporal resolution and
computational performance [9,10].
During feature extraction, three categories of
acoustic features are derived from each speech
frame [3,5]: initially, 40-dimensional MFCC
coefficients are obtained, followed by the
computation of their first- and second-order
differences to create a 120-dimensional dynamic
feature vector. This feature accurately replicates
the properties of human audio perception [3].
Secondly, a 64-dimensional log-Mel spectrum is

calculated to delineate the energy distribution of
speech within the Mel scale. Furthermore, to
delineate the fine structure of the spectrum, the
spectral centroid, spectral roll-off point, spectral
contrast, and chromaticity features are retrieved.
This technique delineates speech features across
various dimensions, encompassing spectral
energy distribution, fraction of high-frequency
components, spectral peak-valley structure, and
pitch perception. All features are merged to
create a composite feature vector. Z-score
normalization is utilized to remove the impact of
units, resulting in a fixed-length sequence
sample including 600 elements.

3.2 Data Equilibrium and Enhancement
A category merging technique grounded in
affective dimension theory was utilized to
rectify the unbalanced distribution of emotion
categories in the dataset. Samples that were
semantically similar to "excited" but less
common were put into the "cheerful" category,
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which made the data distribution more even.
During training, various data augmentation
techniques were concurrently implemented:
random volume scaling (0.6–1.4x) simulated
different speaking intensities; moderate
Gaussian noise was introduced to improve
model resilience against interference; and
temporal stretching (0.7–1.3x) and pitch
variation (±4 semitones) were utilized to
diversify acoustic features, thereby enhancing
the model's generalization ability.

3.3 Sequence Modeling and Attention
Mechanism
The feature sequence is first input into the
bidirectional LSTM network for deep time
series modeling. The network adopts a two-layer
stacking structure, the hidden layer dimension is
set to 128, and each time step outputs a
256-dimensional feature vector spliced by
forward and backward hidden states. This
approach allows the model to concurrently
utilize previous and prospective contextual
information, effectively capturing long-range
dependencies within speech sequences [7].
Subsequent to the Bi-LSTM layer, the model
incorporates an attention mechanism to assign
weights to the output hidden state sequence
according to significance [8]. Specifically, for
all concealed states at each time step produced
by the Bi-LSTM

� = {ℎ1, ℎ2, . . . , ℎ�} (10)
An attention score is calculated for each time
step using a trainable weight matrix. A
normalized attention weight distribution is
produced by the softmax function �� , and the
final context vector, emphasizing emotionally
salient passages, is derived through weighted
summation.

� = �=1
� ��� ℎ� (11)

This approach allows the model to
autonomously recognize and allocate more
weight to speech frames exhibiting substantial
sentiment, thereby augmenting the
discriminative capacity of feature
representations.
The attention layer is strategically placed
subsequent to the Bi-LSTM layer and prior to
the categorization layer. Its purpose is to
selectively emphasize the temporal information
derived from the Bi-LSTM, underscoring time
segments that are more pivotal for sentiment
recognition. This strategy efficiently resolves

the problem of uneven emotional information
distribution in speech sentiment identification,
enhancing the model's sensitivity to critical
emotional segments.

3.4 Multi-Task Classification Framework
A multi-task learning framework is developed to
improve model generalization. The context
vector output from the attention layer is
concurrently input into three distinct classifiers:
the primary task is a sentiment classifier that
generates a 5-dimensional probability
distribution representing cheerful, friendly,
neutral, sad, and unfriendly sentiment states;
auxiliary tasks encompass a speech rate
classifier (slow, medium, fast) and a volume
classifier (soft, medium, loud). This architecture
facilitates the acquisition of more discriminative,
generalizable characteristics via collaborative
training across interconnected challenges.
The model's overall loss function is
characterized as the weighted aggregation of
task losses:
ℒtotal = � ⋅ ℒemotion + � ⋅ ℒspeed + � ⋅ ℒvolume (12)
where ℒemotion、ℒspeed and ℒvolume all
employ cross-entropy loss functions.
Experimental validation demonstrates that
assigning weight factors α=1.0, β=0.3, and
γ =0.3 efficiently utilizes the regularization
benefits of auxiliary tasks while maintaining the
performance of the primary work.

4. Experiments and Results Analysis

4.1 Experimental Configuration
The StyleTalk spoken dialogue dataset, supplied
by National Taiwan University, served as the
standard. This dataset represents the inaugural
spoken dialogue benchmark featuring various
speaking styles within a unified conversational
setting. The training set consists of 1,878
discourse pairs (1,986 samples), whereas the
evaluation set has 486 dialogue pairs (981
samples). The final dataset, following the
consolidation of sentiment categories, consists
of five sentiment classes: joyful, friendly,
neutral, sad, and unfriendly.
The experimental setup utilized an Intel i7
processor and an NVIDIA RTX 4060 GPU,
executed with the PyTorch 1.12.1 deep learning
framework. The Adam optimizer was used to
train the model, starting with a learning rate of
0.001 and using a cosine annealing learning rate
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scheduling method. The batch size was set to 32,
the number of training epochs was set to 50, and
an early termination mechanism was used to
stop overfitting. The weight coefficients in the
multi-task loss function were α=1.0, β=0.3,
and γ=0.3.
Accuracy is the principal evaluation metric,
augmented by precision, recall, and F1 scores
for a thorough study, guaranteeing a
comprehensive assessment framework.

4.2 Ablation Studies
Systematic ablation experiments were devised to
validate model performance. Table 1
demonstrates that the baseline LSTM model
attained a mere 34.56% validation accuracy,
suggesting that sequential modeling alone
inadequately captures sentiment data. The
implementation of a bidirectional structure did
not result in any notable enhancement for the

Bi-LSTM model, as the validation accuracy
persisted at 34.56%, indicating minimal
performance benefits from the bidirectional
mechanism alone. The incorporation of the
attention mechanism led to a significant
enhancement in model performance, with the
Bi-LSTM+Attention model attaining a
validation accuracy of 94.47%. This result
illustrates that the attention mechanism may
proficiently concentrate on sentiment-related
critical speech segments, markedly improving
feature extraction capabilities.
The proposed BiLSTM-ATT-MTL model,
employing a multi-task learning framework,
elevated the validation accuracy to 95.28%
while maintaining the accuracy gap between
training and validation sets at 4.58%.
Experimental findings confirm that multi-task
learning significantly improves model
generalization by utilizing feature sharing and
regularization effects.

Table 1. Ablation Experiment Results
Model Configuration Validation Set Accuracy (%) Training Set Accuracy (%)

LSTM 34.56 39.88
Bi-LSTM 34.56 39.88

Bi-LSTM+Attention 94.47 98.87
BiLSTM-ATT-MTL 95.28 99.86

4.3 Comparative Experiments
This study assessed various model types with
the same dataset to further validate performance.
Comprehensive results are shown in Table 2.
The conventional SVM technique attained an
accuracy of 92.48%, surpassing the baseline
LSTM model, although it demonstrated
constraints in extracting intricate sentiment
features. The Bi-LSTM model attained merely
39.89% accuracy with 4.36 million parameters,
indicating inadequate performance. The
attention-enhanced LSTM and Bi-LSTM models
attained accuracies of 92.02% and 94.74%,
respectively, with 1.77 million and 1.85 million
parameters.
Table 2. Model Performance Comparison

Model Accuracy (%) Parameters (M)
SVM 92.48 -

Bi-LSTM 39.89 4.36
LSTM+Attention 92.02 1.77

Bi-LSTM+Attention 94.74 1.85
BiLSTM-ATT-MTL
(the model in this

paper)
95.10 0.81

The suggested BiLSTM-ATT-MTL model
attains an accuracy of 95.10% with merely 0.81

million parameters, considerably fewer than
other deep learning approaches. This outcome
illustrates that the proposed model sustains
elevated recognition accuracy while providing
enhanced parameter efficiency and practical
utility.

4.4 Result Analysis
To comprehensively assess the model's
recognition efficacy across many sentiment
categories, we performed a detailed analysis.
Table 3 illustrates that the model exhibits varied
identification abilities across the five sentiment
tests. The classification performance detailed in
Table 3 indicates that the model performs
exceptionally well in the sad and neutral
categories, attaining F1 values of 97.38% and
96.55%, respectively. The recognition
performance for the happy and friendly
categories is commendable, with F1 ratings of
95.59% and 95.09%, respectively. The
recognition performance for the hostile category
is marginally inferior to that of other categories,
achieving an F1 score of 90.99%. The analysis
suggests that this decrease is mostly attributable
to the comparatively limited quantity of training
data in this category and certain acoustic
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features that overlap with other categories, such
as friendly. The precision rate of 96.65%
signifies that the model's predictions for this
category are exceptionally dependable.
Figure 2 illustrates the training procedure. Both

the training and validation loss functions
demonstrate a consistent decline, accompanied
by a corresponding enhancement in accuracy.
This signifies that the model exhibits strong
convergence and generalization ability.

Table 3. Recognition Performance of the Best Model on the Validation Set
Sentiment Category Precision (%) Recall (%) F1 Score (%) Number of Samples

Cheerful 94.31 96.91 95.59 291
Friendly 93.62 96.61 95.09 501
Neutral 96.31 96.80 96.55 593
Sad 97.89 96.88 97.38 96

unfriendly 96.65 85.96 90.99 235
Macro Average 95.76 94.63 95.12 1716

Weighted Average 95.32 95.28 95.25 1716

Figure 2. Training Curve

5. Conclusion and Prospective Research
This study presents an approach for identifying
voice sentiment that incorporates
multidimensional acoustic characteristics,
bidirectional LSTM, and attention processes.
The method initially extracts multidimensional
acoustic features, such as MFCC, Mel-spectrum,
and spectral statistics, utilizing a feature fusion
algorithm. It subsequently utilizes a
bidirectional LSTM network to simulate
long-term contextual dependencies within voice
sequences. Building on this foundation, an
attention mechanism is implemented to allow
the model to concentrate on critical speech
portions that convey sentiment. Ultimately,

multi-task learning improves the model's
generalization capacity. Experimental findings
indicate that our approach attains an accuracy of
95.28% in a five-class emotion detection task,
markedly surpassing models including SVM,
LSTM, and BiLSTM.
While our technique attains elevated recognition
accuracy, there exists potential for additional
optimization. Future research will concentrate
on the following avenues: first, examining
end-to-end network architectures to directly
derive affective feature representations from raw
speech signals, thereby diminishing dependence
on manually crafted features; second, probing
the utilization of higher-order attention
mechanisms in speech affect recognition to
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augment model expressiveness by capturing
more intricate feature interactions; furthermore,
the generalization capacity of the method will be
assessed across a broader range of cross-domain
datasets, and training strategies such as
curriculum learning will be contemplated to
enhance model adaptability in complex
scenarios.
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