

# Constructing Integrated Teaching Innovation Teams for Secondary and Higher Vocational Education in the Digital Economy: A Theoretical Framework and Implementation Strategies

Xinyi Liu<sup>1,\*</sup>, Jianchun Li<sup>2</sup>, Chunzhao Liu<sup>2</sup>

<sup>1</sup> Zhejiang Business Technology Institute, Ningbo, Zhejiang, China

<sup>2</sup> Guangdong Songshan Polytechnic, Shaoguan, Guangdong, China

\*Corresponding Author

**Abstract:** The rapid advancement of the digital economy demands urgent reform in vocational education systems to cultivate digitally-proficient technical talent. This study addresses the critical challenge of structural fragmentation between secondary and higher vocational institutions, which hinders the coherent development of student competencies required by modern industries. Using a mixed-methods approach, this research synthesizes existing literature, analyzes current governance mechanisms, and examines a case implementation at Zhejiang Business Technology Institute. The study proposes a four-dimensional theoretical framework for constructing Integrated Teaching Innovation Teams (I-TITs), encompassing structural integration, progressive capability development, collaborative culture cultivation, and deep ecosystem engagement. The framework's application in an automotive program demonstrates significant improvements: student engagement increased by 30%, graduate employment rate reached 95% within six months, and starting salaries rose by 15% compared to pre-reform cohorts. Critical analysis reveals systemic gaps in governance structures, misaligned incentive mechanisms, and inadequate evaluation metrics. This research establishes that systematic I-TIT construction, supported by comprehensive institutional reforms, can transform fragmented vocational education into an integrated, industry-responsive talent cultivation system capable of meeting digital economy demands.

**Keywords:** Digital Economy; Vocational Education; Secondary-Higher Vocational

Integration; Teacher Innovation Teams; Professional Development; Implementation Strategies; Theoretical Framework

## 1. Introduction

The relentless advance of the digital economy is fundamentally reshaping industries and labor markets worldwide. Paradigms of production, service delivery, and management are undergoing profound transformations, driven by a confluence of technologies including artificial intelligence (AI), big data analytics, the Internet of Things (IoT), and cloud computing. This economic metamorphosis places a significant and urgent imperative on vocational education systems to evolve. Traditional models of talent cultivation, often characterized by siloed disciplines, rigid curricula, and a lagging response to industry trends, are no longer sufficient to produce the agile, innovative, and digitally-proficient technical professionals that modern enterprises demand [1]. The very nature of work is changing, with routine manual and cognitive tasks being increasingly automated, while the demand for higher-order skills such as critical thinking, complex problem-solving, and socio-emotional intelligence is surging. This shift necessitates a move away from rote learning and towards educational models that foster adaptability and lifelong learning.

As industries like advanced manufacturing, logistics, and automotive services are redefined by what has been termed the "four new trends"—electrification, intelligence, networking, and shared services—the skills required of the workforce have shifted dramatically from manual operations to complex problem-solving, digital literacy, and interdisciplinary collaboration [2]. For instance, in the automotive sector, technicians no longer just perform

mechanical repairs; they must now diagnose complex software issues across a network of electronic control units (ECUs), manage the intricacies of electric vehicle (EV) battery systems, and interact with customers through digital service platforms. The modern vehicle is a computer on wheels, and its maintenance requires a blend of mechanical, electronic, and software engineering skills. Similarly, logistics management has transformed from a field focused on the physical transportation and warehousing of goods to one dominated by data analytics, automated sorting systems, real-time tracking, and global supply chain optimization software. Professionals in this field must be able to interpret large datasets to predict demand, optimize routes, and manage inventory with unprecedented precision. In advanced manufacturing, the demand has shifted from machine operators to 'cobot' (collaborative robot) supervisors, quality control specialists who can interpret sensor data from IoT-enabled production lines, and technicians skilled in additive manufacturing (3D printing) and predictive maintenance. This granular shift in job roles, which blends traditional vocational skills with high-level digital competencies, underscores the urgency for a vocational education system that can deliver these integrated, high-value skills.

In this context, the integration of secondary and higher vocational education emerges as a critical strategic direction. Historically, these two stages of vocational training have often operated in isolation, creating a fragmented and inefficient educational journey for students. This separation results in significant pedagogical gaps, including misaligned training objectives, repetitive or disconnected curricula, and an insufficient hierarchy of skill development [3,4]. Students progressing from secondary to higher vocational institutions frequently encounter a disjointed experience, where foundational knowledge is either unnecessarily repeated or assumed without being properly taught. This lack of articulation hinders their ability to build a coherent and progressively advancing set of competencies. This structural flaw in the educational pipeline creates a fundamental mismatch between the talent supplied by educational institutions and the complex, composite skills demanded by the digital economy. The result is a workforce that is ill-prepared for the challenges of modern industry and a persistent skills gap that hampers

economic growth and innovation.

Addressing this deep-seated fragmentation requires more than superficial adjustments to curricula or simple articulation agreements. It necessitates a systemic reform centered on the core drivers of educational quality and innovation: the teachers. This paper argues that the construction of Integrated Teaching Innovation Teams (I-TITs) is the central mechanism for achieving a truly seamless and effective system of secondary-higher vocational education. These teams, composed of educators from both secondary and higher vocational levels, industry experts, and educational researchers, act as the primary agents of change. They are empowered to collaboratively design curricula, innovate pedagogical practices, and forge deep, symbiotic connections with the industrial ecosystem. By breaking down the institutional and cultural barriers that have long separated the two tiers of vocational education, these integrated teams can ensure that the entire vocational education journey—from initial entry to advanced specialization—is coherent, progressive, and continuously aligned with the dynamic needs of the digital economy.

This paper aims to provide a comprehensive theoretical framework and actionable implementation strategies for the construction of such integrated teams. It begins by reviewing the existing literature on vocational integration, digital pedagogy, and teacher team development to identify the key challenges and research gaps. Subsequently, it proposes a four-dimensional theoretical framework for the construction of I-TITs, focusing on the critical pillars of Structural Integration, Capability Development, Collaborative Culture, and Ecosystem Engagement. Following this, the paper analyzes current policies to identify systemic gaps that hinder integration and proposes specific, targeted recommendations to create a more supportive environment. To illustrate the practical application and tangible benefits of this model, the paper presents a detailed case study of the framework's successful implementation at Zhejiang Business Technology Institute. By offering both a robust theoretical model and practical, evidence-based guidance, this research seeks to contribute to the development of a more resilient, responsive, and high-quality vocational education system prepared for the challenges and opportunities of the digital age.

## 2. Literature Review

A comprehensive understanding of the challenges and opportunities in constructing integrated teaching innovation teams requires an examination of three intersecting domains of research: the evolution of secondary-higher vocational integration, the transformative impact of digital technologies on vocational pedagogy, and the existing models for teacher team development. This review synthesizes findings from these areas to establish a clear rationale for the proposed theoretical framework and to highlight the specific research gap that this paper aims to address.

### 2.1 The Evolution of Secondary-Higher Vocational Integration

The concept of connecting secondary and higher vocational education is not new, but its implementation has evolved significantly over time. Early models, such as the "3+2" system common in China, primarily focused on creating a procedural link, allowing students to transition from a three-year secondary vocational program to a two-year higher vocational program [5]. While these models provided a clear pathway for students to obtain higher credentials, a substantial body of research indicates that they often function as a "simple superposition of school years" rather than a truly integrated educational experience [6]. The core problem stems from a lack of deep collaboration between the participating institutions. As Liu's research on vocational education in Heilongjiang Province demonstrates, these segmented systems suffer from vague training objectives, a lack of holistic curriculum design, and poor coordination in teaching management and resource sharing [5]. This results in curricula that are often repetitive and fail to build skills in a logical, progressive manner, a problem also noted by Wang in the context of logistics management programs [4].

More recent policy and academic discourse has shifted towards a more holistic approach. This perspective emphasizes the need to design a seamless, long-term talent cultivation system around a unified set of standards and objectives [2]. The goal is to move beyond mere "articulation", which implies a simple connection between two separate parts, to true "integration", where curricula are co-designed and vertically aligned to ensure a spiral development of knowledge and skills. Chen et al.

propose a pathway for constructing such integrated curricula, beginning with industry demand analysis, moving to occupational competency analysis, and culminating in the development of integrated teaching standards and an articulated curriculum system [2]. These studies collectively point to a critical consensus: effective integration is not an administrative formality but a profound pedagogical undertaking that requires breaking down institutional silos and fostering genuine collaboration. The implicit challenge in the literature is that these top-down designs for integrated curricula often fail to translate into classroom practice because the teachers, who are the ultimate implementers of the curriculum, are not sufficiently empowered or equipped to work across institutional boundaries. Thus, while the "what" of integration (a unified curriculum) has been well-defined, the "how" (a collaborative teaching process) remains a significant gap.

### 2.2 The Impact of Digital Transformation on Vocational Pedagogy

The digital economy has catalyzed a paradigm shift in education, giving rise to what scholars have termed a "digital education ecology" [4]. This ecology is characterized by the pervasive use of digital tools, platforms, and data to create more personalized, flexible, and interconnected learning environments. For vocational education, this transformation is particularly consequential. The modern workplace is increasingly digital, and training for it requires pedagogical approaches that mirror this reality. Research emphasizes the need to move beyond traditional classroom instruction and embrace methods such as virtual simulation, digital twins, and data-driven practical training to cultivate the complex skills required in smart manufacturing and modern service industries [7].

This digital transformation places new, significant demands on vocational teachers. Their role is evolving from that of a knowledge transmitter to a facilitator of learning, a curriculum designer, and a technology integrator. Consequently, teachers must possess a high level of "digital teaching capability," which encompasses not only the technical skills to use digital tools but also the pedagogical knowledge to integrate them effectively into the learning process [8]. Research suggests that many vocational teachers currently lack these advanced competencies, creating a critical

bottleneck for the digital transformation of vocational education [9]. This highlights the urgent need for professional development models that are continuous, collaborative, and focused on digital pedagogy. This digital imperative fundamentally changes the profile of an effective vocational teacher. As Ge and Han argue, teachers in the digital age must develop a comprehensive set of competencies that include not only the ability to operate technology but also the ability to design digital learning experiences, manage online learning communities, and use data to assess and improve student learning [8]. The construction of teaching innovation teams, therefore, becomes a critical strategy for institutional capacity building. These teams can function as professional learning communities (PLCs), where teachers collaboratively develop their digital pedagogy, share best practices, and collectively solve the challenges of integrating new technologies, thereby accelerating the digital transformation of the entire institution.

### **2.3 Models and Challenges of Teacher Team Construction**

In response to the need to enhance teacher capacity and pedagogical innovation, many countries have promoted the development of teacher teams. In China, a prominent example is the national-level "Vocational Education Teacher Teaching Innovation Team" construction plan. This policy aims to create high-level, modular, "dual-type" teaching teams, whose members possess both theoretical knowledge and practical industry experience [10]. These teams are tasked with comprehensive reforms in their respective professional domains, including revising talent cultivation plans, developing new curriculum standards, and restructuring the teaching process [11]. The model emphasizes collaborative division of labor and deep integration with enterprises to ensure that teaching remains aligned with industry needs.

Despite these positive policy frameworks, significant challenges persist in the implementation of these teams. Research based on provincial-level surveys, such as that conducted by Liu, reveals systemic problems. These include a lack of effective resource sharing between collaborating institutions, insufficient involvement from higher vocational institutions in the secondary stage, and a general

disconnect in teaching management [5]. Furthermore, many teams lack genuine school-enterprise cooperation, with partnerships often remaining superficial [2]. These challenges point to a fundamental disconnect between policy ambition and implementation reality. Top-down mandates for team formation often neglect the bottom-up work of building trust, shared goals, and collaborative routines. As research shows, a team that exists only on paper cannot drive meaningful innovation. Without robust support structures, a culture that values collaboration over individual achievement, and governance mechanisms that can navigate the complexities of cross-institutional and school-enterprise cooperation, these teams are likely to remain symbolic rather than functional, failing to realize their transformative potential.

### **2.4 Identifying the Research Gap**

The existing literature provides a solid foundation, confirming the necessity of secondary-higher vocational integration, the profound impact of digitalization, and the potential of teacher teams as catalysts for reform. However, a significant research gap remains at the intersection of these three domains. Current research tends to examine either vocational integration at the system level or teacher team construction within a single institution. What is missing is a comprehensive theoretical framework designed specifically for the construction of integrated teaching innovation teams that span the boundaries of secondary and higher vocational institutions. How can these teams be structured to overcome institutional silos? What specific competencies do they require, and how can these be developed progressively? How can a genuine collaborative culture be fostered among teachers from different institutional backgrounds? And how can these integrated teams effectively engage with the broader industrial ecosystem in the digital age? This paper aims to fill this gap by proposing a multi-dimensional framework that directly addresses these questions, providing both a theoretical and practical guide for building the next generation of teaching teams for the digital economy.

### **3. A Four-Dimensional Framework for I-TIT Construction**

Addressing the challenges of fragmentation and digital disruption identified in the literature

requires a systematic and theoretically grounded approach. Merely mandating cooperation is insufficient; what is needed is a robust framework to guide the deliberate construction of teaching teams that are not only innovative but also truly integrated across institutional and sectoral boundaries. This section proposes such a model: the Four-Dimensional Framework for Integrated Teaching Innovation Team (I-TIT) Construction. This framework is designed to provide educational leaders and policymakers with a comprehensive, actionable blueprint for building and sustaining high-performing teams that can drive meaningful reform in the digital age.

### **3.1 Core Concepts**

Before elaborating on the framework, it is necessary to define two foundational concepts that underpin its logic:

**Integrated Teaching Innovation Team (I-TIT):** An I-TIT is a formal, cross-institutional, and multi-disciplinary collective of secondary and higher vocational teachers, industry experts, and educational researchers. It is collaboratively responsible for the entire talent cultivation lifecycle of a specific professional domain, from initial recruitment at the secondary level to advanced skill development and transition to employment at the higher vocational stage. Unlike traditional teaching teams, which are confined to a single institution, an I-TIT operates as a unified entity with shared goals, joint accountability, and integrated governance.

**Digital Pedagogy for Vocational Education:** This refers to the strategic and effective use of digital technologies, data analytics, and online platforms to design and deliver authentic, project-based, and personalized learning experiences. It moves beyond simply using technology as a presentation tool to leveraging it to simulate real-world work environments, facilitate collaborative problem-solving, enable competency-based assessment, and connect learners with industry practices in real-time. It is the core pedagogical orientation that I-TITs must adopt to prepare students for the modern digital workplace.

### **3.2 The Four-Dimensional Construction Framework**

The proposed framework consists of four interconnected dimensions that must be developed in parallel to ensure the successful

construction of an I-TIT. Each dimension represents a critical pillar supporting the team's structure, capabilities, culture, and external connectivity. A detailed exploration of each dimension reveals the practical steps and conceptual shifts required for implementation.

#### **3.2.1. Dimension 1: structural integration**

Structural integration provides the formal architecture that allows the team to operate as a single, cohesive unit across institutional boundaries. This dimension is the foundational skeleton of the I-TIT, designed to overcome the administrative and governance fragmentation that plagues traditional articulation models [5]. Its implementation requires a deliberate focus on joint governance, integrated resource management, and unified quality assurance.

Effective integration begins with joint governance and planning, most practically realized through a cross-institutional steering committee. This body, composed of academic leaders and key faculty from both institutions, must be empowered to develop a single, unified talent cultivation plan that maps the entire educational journey. By doing so, it shifts control from individual institutions to a shared entity, where mechanisms like a rotating chair and mandatory industry representation can ensure a balance of power and keep decision-making grounded in both pedagogical best practice and real-world industry needs.

This shared governance is reinforced by integrated resource management. Such integration involves creating mechanisms for sharing critical resources, including facilitating cross-institutional appointments that allow faculty to teach across both secondary and higher vocational levels. A cornerstone of this approach is the establishment of a common digital platform, which hosts a shared repository of teaching materials, learning tools, and student data, thereby breaking down the digital and physical silos that inhibit collaboration.

Finally, a unified quality assurance system is essential to bind the structure together. This system must move beyond separate institutional evaluations to employ continuous, competency-based assessments that track student progress across the entire integrated pathway. It should also include evaluation metrics for the I-TIT itself, focusing on the effectiveness of its collaborative activities and the long-term success of its graduates, rather than on narrow, institution-specific KPIs.

### 3.2.2. Dimension 2: capability development

Capability Development involves the systematic and progressive cultivation of the diverse competencies required by team members to fulfill their integrated and innovative roles. In the digital economy, teacher competencies must extend far beyond subject matter expertise. This dimension provides the 'muscle' of the I-TIT, ensuring its members are equipped to design and deliver a modern, digitized curriculum. A layered professional development model offers an effective pathway for building this growth.

"Integrated Teaching Specialist" title could be created within the professional promotion ladder, specifically recognizing excellence in cross-institutional and school-enterprise collaboration work. This would make integration a core part of the institutional mission, rather than a peripheral activity.

The foundational tier should serve as the baseline for all I-TIT members, emphasizing comprehensive digital literacy and a firm grasp of modern pedagogical theories such as constructivism and project-based learning. This shared understanding creates a common language and pedagogical foundation for the team.

Building on this foundation, the advanced tier can focus on collaborative and creative skills. Here, teachers learn the principles of integrated curriculum co-design, mapping skills across the secondary-higher vocational divide. They also acquire skills in creating high-quality digital content, such as interactive simulations and virtual reality modules, and master the ability to manage complex, project-based learning experiences.

At the highest level, the expert tier can cultivate select team members as leaders and innovators. These individuals will be trained in educational research methods, enabling them to systematically improve the team's own teaching practices. They will also develop the skills to lead industry-sponsored R&D projects and serve as mentors to their peers, driving the continuous professional development of the entire team.

### 3.2.3. Dimension 3: collaborative culture

While structural mechanisms are necessary, they are insufficient without a culture that supports and encourages genuine collaboration. This dimension represents the 'nervous system' of the team, fostering the informal norms, shared values, and routine practices that build trust and synergy among members from diverse

institutional and professional backgrounds.

Collaboration cannot be left to chance, requiring instead the institutionalization of regular joint activities. The team's work plan must embed required joint teaching and research activities, including weekly virtual meetings for curriculum planning, monthly face-to-face workshops for pedagogical training, and semesterly retreats for strategic review. These routines create a rhythm of interaction that builds familiarity and trust over time.

A formal peer-to-peer mentoring system offers another powerful mechanism for breaking down cultural barriers. By pairing secondary and higher vocational teachers, such a system enables reciprocal learning: higher vocational teachers can share insights on industry trends and advanced theoretical knowledge, while secondary teachers provide valuable perspectives on the developmental needs of younger students. This reciprocal relationship fosters mutual respect and actively breaks down the implicit hierarchy that often exists between higher and secondary vocational education, creating a more egalitarian team structure where expertise is valued regardless of institutional origin.

Finally, team leaders must actively promote a culture of openness and transparency. This involves creating safe spaces for teachers to share challenges without fear of judgment, celebrating both individual and collective successes, and using the shared digital platform as the central hub for all team communication. Such transparency reinforces trust and creates a collective knowledge base for the team.

### 3.2.4. Dimension 4: ecosystem engagement

Ecosystem Engagement refers to the deep, dynamic, and mutually beneficial connection between the teaching team and the broader industry and social ecosystem. An I-TIT cannot operate in a vacuum; its vitality depends on its ability to draw in resources and knowledge from, and contribute back to, the outside world. This dimension acts as the 'circulatory system' of the team, ensuring it remains relevant and responsive.

Deep integration of industry experts represents a fundamental departure from occasional guest lectures. It involves formally integrating seasoned industry professionals into the I-TIT as adjunct faculty, curriculum co-designers, and student mentors. These experts bring cutting-edge knowledge, real-world case studies, and the

latest industry standards directly into the educational process, ensuring the curriculum remains grounded in workplace reality.

This engagement extends to co-development and shared infrastructure. The I-TIT should partner with leading enterprises to co-develop curriculum modules, textbooks, and digital learning resources, ensuring content is both theoretically sound and practically relevant. Furthermore, such partnerships should encompass the joint construction and management of high-tech training bases. These shared facilities, equipped with industry-standard machinery and software, provide immersive learning environments that blur the lines between classroom and workplace.

The team must also maintain dynamic alignment with industry standards, remaining agile in adapting its curriculum to evolving industry needs. This involves continuously aligning the talent cultivation plan with national occupational skill standards and professional qualification systems. By actively participating in skills competitions and encouraging students to obtain professional certifications, the team ensures that its graduates possess credentials that are recognized and valued by employers.

### **3.3 The Evolutionary Logic: From Articulation to Integration**

The four dimensions of this framework are designed to work in synergy, moving a vocational education system from a state of simple articulation to one of deep integration. Articulation is a linear, mechanical process where separate stages are merely connected. Integration, in contrast, is an organic, chemical process where different elements fuse to create a new, stronger whole.

Structural Integration provides the skeleton, the formal governance that overcomes the institutional fragmentation highlighted by Liu [5]. Capability Development provides the muscle, ensuring teachers have the advanced skills, particularly in digital pedagogy, needed to implement an integrated curriculum. Collaborative Culture is the nervous system, fostering the communication and trust required for the different parts to work together seamlessly. Finally, Ecosystem Engagement is the circulatory system, ensuring the team is constantly nourished by and responsive to the real-world needs of industry, preventing the curriculum from becoming obsolete, a key

challenge noted by Chen et al. [2]. By systematically building all four dimensions, institutions can cultivate I-TITs that are not just collections of individuals, but cohesive, resilient, and innovative educational organisms capable of cultivating the high-quality talent the digital economy demands.

## **4. Implementation Strategies and Recommendations**

The successful construction of Integrated Teaching Innovation Teams (I-TITs) as envisioned in the theoretical framework is not solely dependent on the will of educational institutions. It requires a supportive, enabling policy environment that actively encourages and rewards cross-institutional and cross-sectoral collaboration. This section conducts a critical analysis of current policies related to vocational education and teacher development, identifies significant gaps that impede the formation of I-TITs, and proposes a series of targeted recommendations to address these shortcomings.

### **4.1 Analysis of Current Policies**

In recent years, policymakers have demonstrated a firm commitment to reforming and elevating vocational education. National-level initiatives, such as the National Vocational Education Reform Implementation Plan and the National Vocational Education Teacher Teaching Innovation Team Construction Plan, have been instrumental in setting a clear direction for development [11,12]. These policies have successfully promoted the concept of the "dual-type" teacher, emphasized the importance of school-enterprise cooperation, and established a framework for building high-performing teaching teams within individual institutions. The establishment of national, provincial, and school-level innovation teams has created a valuable structure for pedagogical reform and has driven improvements in curriculum design and teaching practices across the country [10].

These policies have laid a critical foundation by raising standards and providing a model for team-based professional development. They have encouraged the adoption of modular teaching approaches and pushed for greater integration of industry standards (such as the "1+X" certificate system) into the curriculum. However, a deeper analysis reveals that the primary focus of these policies remains on strengthening individual institutions or teams

within those institutions. While they advocate for cooperation, they often lack the specific, binding mechanisms necessary to foster the deep structural integration required to bridge the gap between secondary and higher vocational education. For example, while the national innovation team plan encourages collaboration, it does not mandate joint appointments, shared budgets, or integrated governance structures between secondary and higher vocational institutions. The policies are permissive rather than prescriptive when it comes to deep integration, creating a situation where collaboration depends on the voluntary efforts of individual institutions rather than being a feature of the system's design.

#### **4.2 Identifying Policy Gaps**

Despite the positive momentum, several critical gaps exist in the current policy landscape that act as barriers to the widespread implementation of the I-TIT model:

**Structural Fragmentation in Policy Design:** Most policies are designed and implemented in silos, targeting either the secondary vocational education sector or the higher vocational education sector. There is a distinct lack of dedicated policies that specifically govern the interstitial space between these two levels. This creates a policy vacuum where ambitious cross-institutional initiatives struggle to find a firm footing. They risk being classified as temporary "projects" rather than permanent "programs," making them vulnerable to budget cuts and changes in leadership. The absence of a formal policy category for I-TITs means there are no standardized processes for their approval, funding, or evaluation, leading to ad-hoc arrangements that lack sustainability and scalability.

**Inadequate and Misaligned Incentive Mechanisms:** The existing incentive structures for both teachers and institutions are often misaligned with the goals of deep integration. Teacher promotion, performance evaluation, and salary structures are typically tied to their performance within their home institution. There are few, if any, formal rewards for engaging in time-consuming, cross-institutional collaborative work. A teacher's primary responsibility is to their home institution, and performance metrics are overwhelmingly based on teaching hours, publications, and student success rates within that institution. Time spent on co-developing a

curriculum with a partner school, while beneficial to the system as a whole, may be seen as a diversion from "core" duties and could even negatively impact a teacher's career progression. This creates a powerful disincentive for the very behaviors that integration requires. Similarly, institutional funding and rankings are based on individual metrics, creating a competitive environment that can discourage the resource sharing and joint planning essential for I-TIT success.

**Flawed Evaluation and Assessment Metrics:** The success of vocational education is often measured through narrow, institution-centric indicators such as enrollment numbers, graduation rates, and short-term employment data. These metrics fail to capture the long-term value created by an integrated talent cultivation system. The success of an I-TIT should be measured by the reduction in curriculum overlap, the smooth progression of students, the development of complex cross-stage skills, and the long-term career success of its graduates. The current system, which evaluates each institution in isolation, is incapable of measuring these integrated outcomes. This makes it impossible to demonstrate the return on investment for integration projects, thereby hindering their ability to gain political and financial support. There is no established framework for evaluating the performance of a cross-institutional team or assessing the quality of a multi-year, integrated curriculum, making it difficult to justify and sustain such initiatives.

#### **4.3 Policy Recommendations**

To bridge these gaps and create fertile ground for the growth of I-TITs, a series of targeted policy reforms are necessary. These recommendations are aligned with the four dimensions of the theoretical framework proposed in the previous section.

First, policymakers should establish a top-level design for structural integration by moving beyond generic calls for cooperation to develop a dedicated national or provincial-level Guiding Framework for the Construction and Management of Integrated Teaching Innovation Teams (I-TITs). This framework should provide clear definitions, establish formal governance structures such as cross-institutional academic committees, and legally empower these teams to make joint decisions on curriculum, assessment, and student progression. By outlining the legal

status, rights, responsibilities, and obligations of I-TITs and their participating institutions, the framework would create a recognized, formal entity capable of entering agreements, receiving funding, and being held accountable as a collective, thus moving beyond informal, project-based collaborations.

Second, governments should create financial levers to foster a collaborative culture by establishing Special Funds for Vocational Integration. These funds would be awarded competitively to consortia of secondary and higher vocational institutions that submit joint proposals for developing I-TITs. The funding could support cross-institutional teacher appointments, shared digital resources, joint research projects, and stipends for industry experts, providing a powerful financial incentive for deep collaboration. Award criteria should be rigorous, requiring detailed, multi-year plans that demonstrate commitment to all four dimensions of the I-TIT framework, with priority given to proposals that include significant matching funds or in-kind contributions from industry partners.

Third, performance evaluation systems for both teachers and institutions must be reformed to recognize and reward integration efforts. For teachers, participation and leadership in an I-TIT should become a significant factor in professional title evaluations and promotions. For institutions, new performance indicators should measure the success of collaborative programs, including the seamlessness of curriculum transition, the long-term career success of graduates from integrated programs, and the depth of shared industry partnerships. This would shift the focus from individual achievement to collective success. For example, a portion of an institution's public funding could be tied to its performance on these new collaborative metrics. A new professional title such as "Integrated Teaching Specialist" could be created within the professional promotion ladder, specifically recognizing excellence in cross-institutional and school-enterprise collaboration work, making integration a core part of the institutional mission rather than a peripheral activity.

Finally, governments should invest in digital infrastructure for ecosystem engagement. The digital divide between well-resourced and under-resourced institutions can be a major barrier to integration. Provincial governments should lead the investment in and construction of Unified

Digital Education Platforms. These platforms would serve as the digital backbone for I-TITs, providing tools for collaborative curriculum design, a repository for shared teaching resources, a virtual space for joint teaching and research activities, and a data analytics engine for tracking student progress across institutions. Such provincially funded and maintained platforms would democratize access to high-quality digital tools, ensuring that smaller or less-resourced institutions can fully participate in I-TITs. They would also create valuable large-scale datasets on student learning and skill development that could be used by researchers and policymakers to continuously improve the entire vocational education system, dramatically lowering the logistical barriers to collaboration and enabling more dynamic, data-driven engagement with the broader industrial ecosystem.

## **5. Case Study: Zhejiang Business Technology Institute**

To illustrate the practical application and tangible benefits of the I-TIT framework, this section presents a case study of its successful implementation at Zhejiang Business Technology Institute (ZBTI) in its integrated secondary-higher vocational program in Automotive Service and Marketing.

### **5.1 Context and Initial Challenges**

Before the reform, the program exemplified the classic challenges of a fragmented system. A disconnected curriculum saw the secondary stage focusing excessively on traditional automotive mechanics, while the higher vocational stage jumped to advanced management concepts, leaving a significant gap in digital marketing, data analytics, and the specific knowledge required for the burgeoning New Energy Vehicle (NEV) market. This was compounded by a teacher capability gap: secondary school teachers were experts in mechanics but lacked digital marketing expertise, while the higher vocational professors understood marketing theory but had limited practical knowledge of the latest automotive technologies. Industry engagement remained superficial, limited to occasional internships with little to no industry involvement in curriculum design.

### **5.2 Strategic Implementation of the I-TIT**

## Framework

In response to these challenges, the leadership of both institutions committed to a strategic implementation of the I-TIT framework to build a truly integrated team.

The process began with establishing structural integration. A joint Automotive Digital Marketing I-TIT Steering Committee was formed, co-chaired by the deans of both institutions and including two senior industry experts from a leading NEV company. Their first act was to abolish the two separate curricula in favor of a single, five-year Unified Talent Cultivation Plan. This plan mapped out a progressive learning journey, from foundational principles to advanced data analytics and a comprehensive capstone project. A shared digital platform, supported by a learning management system, was established to host all course materials, a virtual simulation lab, and a common student assessment database.

With the structure in place, the focus shifted to capability development. The newly formed 12-person I-TIT underwent a structured, three-tiered professional development program. The foundational tier ensured all members completed certified training in NEV technology and digital marketing analytics. In the advanced tier, the team worked in mixed groups to co-design new project-based courses, such as "Live-Streaming Sales for NEVs." Finally, two team leaders were selected for an expert tier, enrolling in a master's program and leading research on the new curriculum's effectiveness.

A collaborative culture was intentionally fostered to break down institutional silos. The team instituted a strict rhythm of collaboration, with weekly virtual meetings to coordinate teaching and monthly face-to-face workshops for pedagogical innovation. A mentorship program, which paired a marketing professor with a mechanics teacher to co-develop a new module, was particularly effective in fostering mutual respect and a shared understanding of the complete educational pipeline.

Finally, the team pursued deep ecosystem engagement, forging a partnership with a major local automotive group specializing in NEVs. Two of the company's senior marketing managers were appointed as adjunct professors and became active members of the I-TIT. The capstone project was co-designed with the company, giving students access to anonymized sales data to develop a real marketing campaign.

The company also co-invested in upgrading a training room into a Digital Marketing Live-Streaming Studio, co-managed by the I-TIT and the company.

## 5.3 Outcomes and Impact

The implementation of the I-TIT framework yielded significant, measurable results, demonstrating a clear return on the investment in integration. These outcomes can be examined at both the student and institutional levels.

At the student level, the impact was profound. Engagement and satisfaction scores, measured by annual surveys, increased by 30% compared to the pre-reform cohort. In the annual provincial vocational skills competition, the team from the integrated program won first prize in the "Automotive Digital Marketing" category for the first time. Graduates from the program now have a 95% employment rate within six months of graduation, with over 70% securing positions in digital marketing, data analysis, or NEV-specific roles—positions that were largely inaccessible to previous graduates. These graduates also command salaries that are, on average, 15% higher than those from the previous, non-integrated program.

At the institutional level, the outcomes were equally significant. The I-TIT successfully published two papers on integrated curriculum reform in a national-level educational journal and was officially recognized as a provincial-level "Teacher Teaching Innovation Team," securing additional funding and prestige. The success of the automotive program has become a model for reform within the institution, with other departments now embarking on the process of building their own I-TITs. Furthermore, the deep partnership with the automotive group has led to two new corporate-sponsored research projects for the college.

This case demonstrates that by systematically applying the four-dimensional framework, it is possible to transform a fragmented articulation program into a dynamic, integrated talent cultivation engine that is highly responsive to the demands of the digital economy. The success at ZBTI was not accidental but the direct result of a deliberate, structured approach that addressed the structural, capability, cultural, and ecosystem dimensions of integration simultaneously.

## 6. Conclusions

The transformation of the global economy by

digital technologies presents both a profound challenge and a significant opportunity for vocational education. This paper has argued that the traditional, fragmented model of secondary and higher vocational education is inadequate for cultivating the high-quality, digitally-proficient technical talent required by modern industries. The key to unlocking the potential of the vocational system lies in fostering deep, structural integration, driven by the collaborative efforts of innovative educators. The construction of Integrated Teaching Innovation Teams (I-TITs) is presented not merely as a best practice, but as an essential mechanism for achieving this systemic reform.

This paper contributes a novel theoretical framework for the construction of these teams, moving beyond simplistic calls for collaboration to provide a concrete, multi-dimensional blueprint. The proposed Four-Dimensional Framework—encompassing Structural Integration, Capability Development, Collaborative Culture, and Ecosystem Engagement—offers a holistic guide for creating teams that are robust, skilled, synergistic, and industry-aligned. The successful case study at ZBTI provides empirical evidence of the framework's effectiveness, demonstrating that a systematic and multi-pronged approach can yield significant improvements in student outcomes and institutional capacity. The targeted policy recommendations provided aim to bridge existing gaps in policy design, incentive structures, and evaluation metrics, fostering an environment where I-TITs can not only be formed but can also thrive and drive sustainable innovation.

The implications of this research are significant for a range of stakeholders. For policymakers, it provides a clear rationale and actionable agenda for designing the next generation of vocational education policies that prioritize and reward deep integration. For educational administrators, the framework offers a practical roadmap for breaking down institutional silos and strategically investing in teacher capacity. For teachers, it provides a vision for a more collaborative, dynamic, and impactful professional role. Ultimately, the successful implementation of this model will lead to a more coherent, responsive, and effective vocational education system, benefiting students by providing them with a seamless and progressive learning journey that leads to enhanced career

prospects in the digital economy.

Future research should seek to replicate and validate the framework across different professional domains and geographical contexts. Comparative case studies of different integration models would be beneficial. Furthermore, longitudinal studies that track the career trajectories of graduates from these integrated programs are needed to definitively assess the long-term impact of this systemic reform on talent quality and social-economic development. The path forward is challenging and requires a concerted, collaborative effort from all stakeholders. It demands systemic thinking from policymakers, visionary leadership from administrators, and a willingness from teachers to embrace a new, more collaborative professional identity. However, the cost of inaction—a workforce unprepared for the future and an economy hobbled by a skills gap—is far greater. By focusing on the deliberate and systematic construction of Integrated Teaching Innovation Teams, the vocational education system can transform itself from a collection of disparate institutions into a powerful, integrated engine of talent cultivation, successfully navigating the complexities of the digital age and empowering a new generation of skilled professionals to thrive within it.

### **Acknowledgments**

The author would like to acknowledge this research is supported by the 2024 Institutional-Level Special Research Project on the Integration of Secondary and Higher Vocational Education Teaching Reform of Zhejiang Business Technology Institute, and represents a research outcome of this project( Project No: 04, Principal Investigator: Xinyi Liu). Guangdong Provincial General University Research Platform "Northern Guangdong Rural Revitalization Research Institute" (Project No: 2022WZJD015, Principal Investigator: Liu Chunzhao).

### **References**

- [1] Liu, S., & Hardy, I. (2023). Understanding Chinese national vocational education reform: a critical policy analysis. *Journal of Vocational Education & Training*, 75(5), 1055-1077.
- [2] Chen, K.; Qian, M.Q.; Long, Y. The Realistic Basis, Internal Logic and Promotion Path of the Integrated Curriculum Reform of Secondary and Higher Vocational

Education—Taking the Major of Automobile Service and Marketing as an Example. *Vocational and Technical Education* 2024, 23, 3-9.

[3] Fang, J. The Value, Predicament and Path of AI Empowering the Integrated Construction of Ideological and Political Courses in Secondary and Higher Vocational Colleges. *Vocational and Technical Education* 2025, 35, 160-163.

[4] Wang, K. Research on the Integrated Curriculum Reform of Logistics Management Major in Secondary and Higher Vocational Colleges from the Perspective of Digital Education Ecology. *Modern Business Trade Industry* 2024, 19, 198-200.

[5] Liu, W.S. Research on the Strategy of Improving the Quality of Talent Cultivation in the Integrated System of Secondary and Higher Vocational Education in Heilongjiang Province. *Journal of Heilongjiang Institute of Teacher Development* 2024, 43, 107-110.

[6] Zou, X.Y.; Yang, L.X. The Value, Predicament and Relief of AI Empowering the Integrated Construction of Ideological and Political Courses in Secondary and Higher Vocational Colleges. *Journal of Wuyi University* 2023, 42, 70-75.

[7] Shi, G.P.; Liu X.X. The Path Selection of the Integrated Construction of Ideological and Political Courses in Secondary and Higher Vocational Colleges under the Governance of Vocational Education Groups. *Journal of Heilongjiang Institute of Teacher Development* 2023, 42, 73-75.

[8] Wu, J.Q.; Ren, F.X.; Li, M. Digital Competence of Teachers: Connotation, Evolution Path, and Framework Construction. *Heilongjiang Higher Education Research* 2021, 39, 83-90.

[9] Liu, S.Z. The Cultivation of Professionalism of Secondary and Higher Vocational Students in Career Education. *Journal of Heilongjiang Institute of Teacher Development* 2021, 40, 55-57.

[10] Chen, Z., Pei, W., Zhang, J., & Wu, X. (2025). The transformation of Chinese vocational education in the era of globalization. *Vocation, Technology & Education*, 2(3).

[11] Zhu, G.Y.; Yang, J. Research on Professional Teaching Standards Based on the Integration of Secondary and Higher Vocational Education—Taking the Major of Automobile Service and Marketing as an Example. *Auto Maintenance& Repair* 2022, 24, 34-37.

[12] Zhu, G. Analysis of the Teaching Standards of Automobile Service and Marketing Major in the Integration of Secondary and Higher Vocational Education. *Times Automobile* 2019, 12, 108-109.