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Abstract: As awareness of smoking
prohibition in public places increases,
technology that automatically detects smoking
behavior is particularly important. With the
rapid development of deep learning and
neural networks, the typical You Only Look
Once version 5 (YOLOv5) algorithm can be
used for prediction, the traditional algorithm
performs well on the picture, but the detection
on the video will have false detection, so the
MediaPipe machine learning framework is
introduced to improve the accuracy of video
detection, and the relative distance calculation
of the target’s hand, mouth, and the position
of the cigarette detected by YOLOv5 can
comprehensively judge whether the object
smokes. Deploy an improved algorithm to call
the camera or import the video for detection,
and the items similar to cigarettes in the video
can be eliminated, reducing the probability of
false detection.
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1. Introduction
One of the major global public health concerns is
smoking. Effectively monitoring and controlling
smoking behavior has become crucial to public
health management, particularly in light of the
growing implementation of smoking prohibition
regulations in public places [1]. Even though
there are manual monitoring techniques and
conventional smoke detectors, they frequently
have problems like false alarms and delayed
responses, which makes it challenging to meet
real-time monitoring requirements. Image
recognition-based smoking behavior monitoring
techniques are progressively showing
considerable application promise as deep learning
and computer vision technologies advance
quickly [2]. Smoking behavior in photos can be
effectively detected by using deep learning
algorithms such as the You Only Look Once
(YOLO) series, which offer precise and ongoing

answers, especially in intricate and changing
surveillance situations.
The main object detection algorithms used in
computer vision-based smoking habit monitoring
currently are the YOLO series, which can
partially recognize important aspects of smoking
behavior like smoke and cigarettes [3]. The
YOLO algorithm’s drawback is that, while it
performs exceptionally well on static photos, it
frequently misses and makes false detections in
dynamic video surveillance since cigarette
objects are little and have a propensity to blend in
with other objects or the background.
Additionally, current research frequently ignores
the dynamic aspects of smoking behavior,
especially the hand and mouth movements, which
have a significant impact on the precision and
usefulness of smoking behavior identification.
By selecting the best model YOLOv5x.pt [4]
from many YOLO series models, and integrating
it with the MediaPipe model to increase detection
accuracy, this work seeks to suggest a new
technique for monitoring smoking behavior. This
study hypothesize that false detections from
long-distance shooting can be effectively reduced
and that comprehensive weighted judgment can
provide more accurate smoking behavior
identification by simultaneously detecting the
cigarette object and the dynamic changes of the
mouth and hands [5]. Specifically, the MediaPipe
model will track the dynamic movements of the
hands and lips, while YOLO will identify the
cigarette item. It is anticipated that a thorough
examination of these three components will
improve the ability to identify smoking behavior.
The optimum model for cigarette target
recognition was found by comparing several
models, and a novel approach that combined the
MediaPipe and YOLOv5 models was put forth,
addressing the issue of monitoring smoking
habits from several angles. In addition to
improving the system’s ability to judge smoking
behavior, position detection for the mouth and
hands also successfully lessens the false detection
issue that arises with the single YOLOv5 model
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in complicated situations. Furthermore, this
study’s multi-model fusion method [6] offers a
more reliable and accurate way to track smoking
habits in real time, with a high application value.

2. MediaPipe Model and YOLOv5 Model

2.1 YOLOv5’s Basic Architecture
YOLOv5 is a variation of the YOLO series. It
significantly improves speed, accuracy, and

usability over earlier iterations. YOLOv5’s
primary benefits are multi-scale prediction via
multiple detection heads, effective feature
extraction, and the capacity to detect targets at
various scales. A model that is appropriate for
object detection is constructed by dissecting the
model structure layer by layer. The following
major components shown in Figure 1 make up
the structure of YOLOv5 [7].

Figure 1. Basic Architecture of YOLOv5
YOLOv5’s input module consists of the focus
module and picture preprocessing. The focus
module processes the supplied image using a
unique slicing technique. In particular, it
quadruples the number of channels and halves the
input image’s spatial dimensions (height and
width) by rearranging each 2x2 pixel block to
correspond to a single pixel position in the output
feature map. For instance, the size of the output
feature map from a 640*640*3 input image after
processing by the Focus module is 320x320x12.
By increasing the number of channels, this
operation not only lessens the computational load
for later network processing but also preserves
local image information, which enables the
model to better capture the fine details of small
targets [8], greatly increasing the accuracy of
small target detection. This solution establishes a
strong basis for upcoming feature extraction and
object identification tasks by deftly striking a
balance between computing efficiency and
feature extraction capacity.
The backbone of the feature extraction network is
responsible for extracting useful feature maps
from the input image. The feature extraction
network used by YOLOv5 is called
CSPDarknet53 (Cross-Stage Partial connections
Darknet53), which is an enhanced Darknet53 that
incorporates the CSP structure to decrease
computing burden and increase computational
efficiency.

The Neck network’s function is to further process
the backbone’s features in order to make object
detection at various scales easier. The neck
structure of YOLOv5 is PANet (Path
Aggregation Network), which efficiently
combines data from various scales to improve the
network’s detection capabilities for both tiny and
large objects.
YOLOv5’s detection head is in charge of
producing class, object location, and confidence
predictions as well as handling the last object
detection duty. At each scale, YOLOv5 employs
a number of detection heads, each of which
makes a prediction about the target class and
location [9].

2.2 The MediaPipe Model
Real-time computer vision tasks like position
estimation, face recognition, and gesture
recognition are frequently performed using
MediaPipe, a cross-platform, high-performance
multimedia processing framework that Google
suggested [10]. This system uses MediaPipe as
one of its main elements to identify hand, facial,
and position information in real time. It
complements the YOLOv5 model to improve the
system’s robustness and recognition accuracy for
smoking behavior.
The MediaPipe model’s entire processing flow in
this system is depicted in Figure 2. The structure
of system consists of four primary phases: the
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input stream, preprocessing, inference, and
postprocessing. The entire processing cycle
begins when the system receives image frames
from the camera or video as an input stream. The
image moves on to the preprocessing phase,
which entails data augmentation, normalization,
and image scaling. The model’s capacity to
generalize is enhanced by data augmentation
techniques, including image rotation and
brightness adjustments; normalization stabilizes
the pixel value distribution, and resizing unifies
the input to the size required by the model.
The image is transmitted to the inference step for
object detection and feature extraction following
preprocessing. In this step, MediaPipe employs
neural networks to identify important points in
the image using its pre-trained models
(HandLandmark, FaceMesh, Pose, etc.). The
inference stage produces intermediate detection
findings, including key point coordinates and
their confidence levels [11].
The postprocessing phase ensues, with the goal of
further refining the inference outcomes. First,
redundant or low-confidence detections are
eliminated using result filtering. Thereafter, the
structured detection data is formatted to satisfy
the downstream jobs’ data needs. Lastly,
functional modules like behavior identification,
alarm system activation, or health prompt
creation obtain the processed data as output.

Figure 2. Structure of the MediaPipe Model
The MediaPipe model’s high real-time speed and
simplicity of deployment are its most significant
advantages in this system. The entire processing
flow can operate steadily on mobile and
embedded devices thanks to its internal
implementation, which blends GPU acceleration
methods with graph calculation pipelines.
Additionally, MediaPipe’s modular design makes

it easy for developers to combine various
detection models (hand, face and pose, for
example) to accomplish multi-dimensional
feature fusion. This is crucial for detection tasks
involving spatial, temporal, and contextual
cross-features, such as smoking behavior [12].
In addition to being the system’s main module for
extracting picture features, MediaPipe’s
transparent process structure also shows how
well-thought-out and effective the structural
architecture of contemporary real-time visual
systems is. This system effectively and accurately
detects smoking behavior in complicated
environments and responds in real-time by
utilizing its potent multi-modal perception
capabilities.

3. Preparing and Processing Datasets
The MediaPipe model and YOLO series models
are the primary components of this algorithm
model. The dataset simply needs to satisfy
YOLO’s standards because the latter mostly uses
Google’s pre-trained models. This experiment
primarily employed two datasets: the first is a
public dataset from AI Studio that includes a
variety of file types, as illustrated in Figure 3.
Nearly half of the files are in the JPEG format,
with the remaining 7.7% being in the JPG and
JSON file types. “Smoke” is a publicly available
dataset from GitCode that includes statistics on
file types: 2472 jpeg files, 2 cache files, and 2472
txt files. There are 2472 image files in the
collection, out of a total of 4946.

Figure 3. AI Studio Public Smoking Dataset
Proportion

The original dataset’s photos and associated
JSON annotation files underwent uniform format
conversion and organizing to comply with the
YOLO model’s data format criteria. At the same
time, the preprocessed dataset was automatically
divided and rearranged into training, validation,
and test sets to ensure the model training’s
generalization capability and meet the data
organization requirements of the YOLO training
framework. To generate the appropriate
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configuration file data.yaml, it was also necessary
to standardize the data reading format during
YOLO model training.

4. The Process of Experimentation

4.1 The Experimental Setting
The compiler used was PyCharm. JetBrains
created PyCharm, a Python Integrated
Development Environment (IDE) that is popular
in data science and Python programming
domains. It offers a wealth of strong features to
assist developers in increasing the effectiveness
and caliber of their code. It enables the
installation of related dependencies and the
construction of separate environments for every
project by allowing direct administration of
Python virtual environments. Additionally, it
facilitates project dependency management by
supporting package management systems like Pip
and Conda. Table 1 displays the computing
environment that was utilized.

Table 1. Environment of the System

4.2 Measures of Evaluation
Accurately assessing model performance is
essential for comprehending its advantages and
disadvantages in object detection jobs. Precision,
recall, mean average precision at Intersection
over Union (IoU) is 0.5 (mAP_0.5), and the
extended mean average precision over IoU
thresholds from 0.5 to 0.95 (mAP_0.5:0.95) were
chosen as the primary evaluation measures to
thoroughly assess the model’s detection ability.
These metrics offer a scientific foundation for
model comparison and optimization by reflecting
the model’s performance in the detection job
from several perspectives.

IoU is a crucial statistic for determining precision
and recall. It quantifies the degree of
correspondence between the ground truth box and
the projected bounding box. The IoU formula is:

IoU=Area of Intersection
Area of Union

= Area A∩B
Area A∪B

(1)
The value range of IoU is [0,1]. Where: Area of
Union: The union area of predicted box A and
ground truth box B. Region of Intersection: The
overlapping region between forecasted box A and
ground truth box B. A number nearer 1 indicates
a greater match between the predicted box and
the ground truth box.
Precision a crucial indicator of the model’s
prediction accuracy, precision shows the
percentage of really positive samples among
those that were anticipated to be positive (i.e.,
detected targets). The precision formula is:

Precision=TP/(TP+FP) (2)
FP (False Positives) is the number of instances in
which the model incorrectly predicts background
or other non-target areas as targets, i.e., detection
results where the IoU between the predicted box
and the ground truth box is less than the set
threshold. TP (True Positives): The number of
targets that the model finds correctly, i.e.,
detection results where the IoU between the
predicted box and the ground truth box is greater
than or equal to a set threshold (e.g., 0.5).
A higher level of precision means that the model
has a lower false positive rate and is better at
evaluating targets during detection. But focusing
only on achieving high precision could make the
model overly cautious and overlook some real
goals.
Recall assesses the model’s capacity for detection
by concentrating on the percentage of all real,
active targets that the model is able to identify.
The recall formula is:

Recall=TP/(TP+FN) (3)
The term FN refers to the number of real targets
that the model failed to identify, which includes
ground truth boxes that were not accurately
matched by any forecast box.
Greater recall denotes a model’s improved
capacity to detect targets, allowing for greater
coverage of all real, active targets. High recall,
however, could come at the expense of precision,
resulting in a higher number of false positives
from the model.
MAP_0 metric computes the average precision
across all recall levels, providing a thorough
assessment of the model. The precise procedure
is as follows: Rank the predicted boxes for each

Item Information
Operating System Windows 10 10.0.26100

Platform Windows-10-10.0.26100-SP0

Python Version
3.8.18 (default, Sep 11 2023,
13:39:12) [MSC v.1916 64 bit

(AMD64)]
Number of CPU

Cores 6

Number of CPU
Logical Cores 12

CPU Usage 13.9% 13.9%
Number of GPU

Devices 1

GPU 0 NVIDIA GeForce RTX 3050
Laptop GPU

CUDA Version PyTorch CUDA 11.8
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category according to confidence, then use the
ground truth boxes to determine their IoU value.
A TP is defined as an IoU ≥ 0.5, a FP otherwise,
and FN is defined as unmatched ground truth
boxes. This amount is used to compute precision
at various recall levels and plot the
precision-recall curve. According to the formula
below, the Average Precision (AP) for that
category is represented by the area under this
curve. Lastly, mAP_0.5, which fully represents
the model’s detection ability across all categories,
is obtained by averaging the AP values for each
category.

AP=∑r=0
1 Precision(r)×∆Recall(r) (4)

In this context, ΔRecall (r) represents the small
change in recall, while r denotes the range of
recall values, which spans from 0 to 1.
When evaluating the model’s detection
performance for various target categories,
mAP_0.5 strikes a compromise between
precision and recall. It is a commonly used metric
that is particularly well-suited for the thorough
assessment of detection completeness and
accuracy in object detection activities.
MAP_0.5:0.95 expanded evaluation metric is
used to more thoroughly assess the model’s
performance under various detection accuracy
requirements. In contrast to mAP_0.5,
mAP_0.5:0.95 takes into account several
scenarios in which the IoU threshold varies from
0.5 to 0.95 (in steps of 0.05), in addition to the
situation when the IoU threshold is equal to 0.5.
The model’s performance under various accuracy
criteria can be more accurately reflected by
mAP_0.5:0.95, which is especially significant for
situations demanding high-precision detection. It
examines the model’s detection performance
under higher accuracy requirements (e.g.,
IoU=0.95) and its approximate localization
ability for targets (e.g., IoU=0.5). mAP_0.5:0.95

[13] allows for a more thorough assessment of
the model’s resilience and flexibility in various
situations.

4.3 Comparing Multiple Models
To identify the model most suited for the target
detection job, we performed a performance
comparison analysis of several models in the
YOLO series. We found the best model by
comparing the evaluation parameters of six
models: YOLOv5n, YOLOv5s, YOLOv5x,
YOLOv8m, YOLOv8n, and YOLOv8x [14].
Table 2 below lists each model’s primary
parameters.
The performance of six models from the
YOLOv5 and YOLOv8 series was compared in
the study using the same number of 10 training
epochs in the test for detecting smoking habits.
With a precision of 0.76690, recall of 0.73324,
mAP_0.5 of 0.73984, and mAP_0.5:0.95 of
0.36214, the YOLOv5x model outperformed the
other models by a large margin, indicating its
outstanding detection accuracy and stability,
according to the results. The overall detection
efficacy of the YOLOv8 series was nevertheless
somewhat lower than that of YOLOv5x, although
it had reasonably balanced performance in certain
lightweight models (for example, YOLOv8n had
mAP_0.5 of 0.60107 and mAP_0.5:0.95 of
0.34212). To guarantee excellent recognition
accuracy and dependability in real-world
situations, YOLOv5x was finally chosen as the
target detection model for this system after taking
into account both detection accuracy and
application requirements. The best model was
chosen, and training was conducted using it.
Smaller batches were first used for comparison
due to the model’s size; in order to perhaps obtain
better parameters, training was then done on a
server. Table 3 displays the outcomes of the
server’s training.

Table 2. Comparison of Multi-Model Evaluation Parameters

Table 3. Training Log for Servers

Model Precision Recall mAP_0.5 mAP_0.5:0.95 Epoch
yolov5n.pt 0.65193 0.61200 0.54197 0.26836 10
yolov5s.pt 0.66274 0.61497 0.57296 0.29061 10
yolov5x.pt 0.76690 0.73324 0.73984 0.36214 10
yolov8m.pt 0.63868 0.62567 0.59335 0.35047 10
yolov8n.pt 0.64780 0.64800 0.60107 0.34212 10
yolov8x.pt 0.66578 0.63280 0.61207 0.29921 10

Epoch Precision Recall mAP_0.5 mAP_0.5:0.95
0 0.6088 0.4300 0.4945 0.1907
1 0.7719 0.7450 0.8048 0.3240
2 0.7927 0.7150 0.7998 0.3558
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Figure 4 shows that the model has a satisfactory
fitting effect on the dataset because both the
accuracy and the loss rate meet high standards.

Since just the smoking target is recognized, the
cls _ loss stays at 0.

Figure 4. Parameter Change Trend

4.4 Integrating MediaPipe and YOLOv5
Models
We were able to obtain an ideal YOLO model
after finishing all of the previously specified
work. When applied to video detection, this
model produced false positives for things that
resembled cigarettes, despite its excellent
performance in image recognition. To make a
thorough assessment based on the relative
positions of the cigarette and human body parts,
the MediaPipe model was developed and
integrated with YOLOv5x [15]. Figure 5 displays
its process structure:

Figure 5. Diagram of System Operation
Following Combination

The system’s overall workflow is as follows: 21
hand key points are extracted using the
MediaPipe Hands module for hand recognition.
A cigarette-holding action is deemed to exist
when the Euclidean distance between the tips of
the index and middle fingers (landmarks 8 and 12)
drops below a predetermined threshold. The
mouth center point (landmark 13) is further
located by obtaining 468 face key points using
the MediaPipe FaceMesh module for facial
detection.
It is possible to identify whether smoking is
taking place by measuring the distance between
the mouth point and the center of the cigarette
detection box. The system’s video processing
flow is built using OpenCV. To obtain the
cigarette target box, each frame is first sent to the
YOLOv5 model. At the same time, the current
frame’s hand and face key points are extracted.
Then, two fundamental functions, is _ mouth _
near _ cigarette () and is _ hand _ holding _
object (), ascertain whether the mouth is close to
the cigarette target and whether a finger-holding
cigarette action is present, respectively. The
system recognizes smoking behavior in that
frame and marks prompt information if at least

3 0.8385 0.7010 0.7647 0.3574
4 0.8518 0.7700 0.8293 0.4251
5 0.7669 0.7300 0.7398 0.3621
6 0.8343 0.7200 0.8208 0.4419
7 0.8279 0.7450 0.7865 0.4219

…… …… …… …… ……
28 0.9479 0.9150 0.9335 0.5520
29 0.9430 0.9200 0.9295 0.5403
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one of these two requirements is satisfied. Figure
6 shows an example of a video frame.

Figure 6. Example Diagram for Detection
The method also incorporates a
frame-count-based confidence-building strategy
for smoking behavior to lessen sporadic
miscalculations. The system outputs the overall
recognition result after processing every video
frame and calculating the percentage of frames
where smoking behavior was recognized. This
approach strikes a compromise between stability
and real-time performance.

5. Conclusion
YOLOv5 and MediaPipe were integrated in the
experimental effort to create a reliable and
effective smoking behavior detection system. The
YOLOv5 model is the main object identification
framework. It quickly finds and recognizes
cigarette targets. To address the drawback that
using bounding boxes alone makes it challenging
to appropriately assess behavioral semantics,
MediaPipe was added concurrently to achieve
high-precision extraction of important hand and
facial points. By combining these two visual
modules, the system is able to recognize and
comprehend smoking behavior more deeply by
analyzing if the mouth is close to the cigarette in
addition to determining whether a cigarette is
being carried by the hand.
The system showed satisfactory accuracy and
real-time performance in testing, which makes it
appropriate for real-world applications, including
intelligent health intervention and surveillance
video analysis. Future studies may further add
behavioral temporal analysis models (like LSTM
or Transformer) to enhance the system’s
comprehension of intricate action sequences.
Meanwhile, it is anticipated that the system’s
generalization and adaptability under various
conditions and individual differences will be
enhanced through multi-source data fusion and
cross-domain transfer learning.
In conclusion, the experiment confirmed the

viability and efficiency of multi-modal visual
technology in challenging behavior detection
tasks, offering fresh perspectives and a useful
basis for research on smoking behavior
recognition.
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