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Abstract: To address the issues of disturbance
deviating from Kkey areas and insufficient
controllability in  adversarial  sample
generation methods based on Generative
Adversarial Networks (AIGAN), which lead
to suboptimal attack effectiveness and low
authenticity, this paper proposes the Diff-
AIGAN adversarial sample generation
method. First, a Channel-Spatial Attention
Module (Convolutional Block Attention
Module, CBAM) is introduced to re-calibrate
the feature maps using a "channel-first,
spatial-later" attention mechanism, guiding
the network to focus automatically on more
important channels and positions. Next, the
fused feature maps are input into the
generator to generate the initial disturbance,
and a Stochastic Differential Guide Module
(SDGM) is used to enhance the controllability
of the disturbance, generating better
adversarial samples. Finally, the adversarial
samples are input into the discriminator and
target model, and the loss value is iteratively
computed and fed back to the generator to
optimize the generation of more effective
perturbations. Experimental results show that
the Diff-AIGAN method achieves an attack
success rate of over 99% on LeNetC and
VGG11 in the MNIST dataset, and an attack
success rate of 96.15% and 96.43% on
ResNetl8 and ResNet32 models in the
CIFAR-10 dataset, respectively. At the same
time, the generated disturbances focus on key
image areas, with high sparsity and small
magnitude, and outperform comparison
methods across various metrics.

Keywords: Adversarial Examples; Generative
Adversarial Networks (GANs); Diffusion
Models; Perturbations; Image Generations

1. Introduction

In recent years, deep neural networks (DNNs)
have achieved remarkable performance in image
classification [1], object detection [2], semantic
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segmentation [3], and autonomous driving [4].
However, numerous studies have demonstrated
that DNNs are highly vulnerable to carefully
crafted inputs. By adding imperceptible, small-
magnitude perturbations to benign images, an
adversary can generate adversarial examples that
induce incorrect predictions. This vulnerability
poses serious risks in safety-critical applications
such as surveillance, autonomous driving, and
medical diagnosis, and highlights the need for a
systematic study of adversarial example
generation and its improvement to enhance the
security and trustworthiness of Al systems.
Szegedy et al. [5] first systematically revealed
the existence of adversarial examples.
Subsequently, gradient-based attacks such as the
Fast Gradient Sign Method (FGSM) [6], the
Basic Iterative Method (BIM)[7], and Projected
Gradient Descent (PGD) [8] have become
standard white-box baselines. In parallel,
optimization-based  approaches,  including
DeepFool [9] and the Carlini & Wagner (C&W)
attack [10], formulate adversarial example
generation as a constrained optimization
problem, achieving high attack success rates
with small perturbation magnitudes.
Nevertheless, these methods typically incur high
computational cost and are difficult to deploy in
efficient or real-time attack scenarios.

To improve generation efficiency, generative
adversarial networks (GANs) have been
introduced into adversarial example generation.
AdvGAN [11] directly learns a mapping from
clean images to perturbations via a generator,
achieving a favorable trade-off between attack
success rate and  generation  speed.
AdvGAN++[12] further enhances the stability
and generalization of the generator by refining
the perturbation constraints and network
architecture. Zhao et al. [13] proposed DG-GAN,
a bidirectional GAN framework that jointly
addresses adversarial example generation and
defense, demonstrating strong performance
under both white-box and black-box settings.
Zhu et al. [14] presented GE-AdvGAN, which
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employs a gradient editing mechanism to
improve the transferability and quality of
adversarial examples. Meanwhile, representative
GAN variants such as DCGAN, WGAN, and
StyleGAN  have  significantly  improved
generation quality, training stability, and sample
diversity, yet they still suffer from mode
collapse. AIGAN [15] introduces an Attacker
module that supplies strong external adversarial
samples to the discriminator, compelling the
generator to  produce more deceptive
perturbations.

Despite these advances, existing methods for
image adversarial example generation still
exhibit two major limitations: (1) most
generators mainly rely on single-scale features
and lack joint modeling of global semantics and
local details, leading to suboptimal feature
representations; (2) the generated perturbations
often have limited sparsity and smoothness,
which reduces their naturalness and makes them
more detectable. As a result, current approaches
struggle to simultaneously balance attack
success rate, imperceptibility, and transferability.
To address these issues, this paper proposes
Diff-AIGAN, an improved adversarial example
generation framework based on feature fusion
and noise diffusion. Built upon the AIGAN
architecture, Diff-AIGAN incorporates a
Convolutional Block Attention Module (CBAM)
to fuse deep and shallow feature maps, enabling
the generator to focus perturbations on
semantically critical regions while preserving
fine details and enhancing attack effectiveness.
In addition, a Stochastic Differential Guide
Module (SDGM) is designed to refine and
control the perturbations, improving the realism
of the generated adversarial examples. Extensive

experiments demonstrate that Diff-AIGAN
achieves a more favorable balance between
attack  success rate and  perturbation

imperceptibility, providing a new perspective for
research on adversarial example generation.

2. Design of the Diff-AIGAN Model

2.1 Architecture of the AIGAN Model

The overall architecture of AIGAN consists of a
generator, a discriminator, an attacker, and a
fixed target model. the adversarial example
generation process is as follows. Given a clean
image x and a target label t, the generator
produces a class-conditional perturbation 6 ,
which is added to the original image to obtain an
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adversarial example x’. The adversarial example
is then fed into the discriminator, which is
trained to distinguish real images from generated

adversarial ones. Meanwhile, adversarial
examples produced by the attacker are also
provided to the discriminator to further

strengthen adversarial training. A joint loss,
composed of the target attack loss, the
discriminator attack loss, and the discrimination
loss, is backpropagated to the generator,
encouraging it to learn stronger adversarial
perturbations. By iteratively updating these
components, AIGAN is able to generate high-
quality targeted adversarial examples for
arbitrary classes. In this work, we build upon
this baseline architecture and introduce several
improvements.

attacker
adversarial example x” D
Discriminator

Generator

.0

perturbation

P——— adversarial example x
original image

model
feedback
results

target model

Figure 1. Architecture of the AIGAN Model

2.2 Architecture of the Diff-AIGAN Model

In this paper, we propose an improved
adversarial example generation method, termed
Diff-AIGAN. As shown in Fig. 2, Diff-AIGAN
mainly consists of a Convolutional Block
Attention Module (CBAM), a generator, a
Stochastic Differential Guide Module (SDGM),
a discriminator, an attacker module, and a fixed
target model. CBAM is employed to adaptively
fuse multi-scale feature maps, while the
generator produces initial perturbations. SDGM
refines these perturbations and outputs the final
adversarial  examples. the  discriminator
distinguishes adversarial examples from original
images and computes the adversarial loss,
whereas the attacker module further strengthens
the generator’s attack capability. the target
model classifies the adversarial examples and
provides a misclassification loss. the adversarial
loss and misclassification loss are jointly
backpropagated to the generator, encouraging it
to produce adversarial examples that are both
visually similar to the original images and highly
effective in misleading the target model.
capabilities.
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2.3 Channel-Spatial Attention Module

Feature fusion aims to exploit feature maps from
different layers to enhance the model’s
representation capability for input images. In the
original AIGAN model, the encoder primarily
extracts deep feature maps, while fine-grained
details contained in shallow features tend to be
suppressed or lost. To preserve local details
while retaining global semantic information, we
introduce a feature fusion operation after deep
feature extraction. the Convolutional Block
Attention Module (CBAM) [16] alleviates the
inconsistency among multi-scale features by
adaptively learning channel-wise and spatial
weights for each
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Figure 3. Feature Fusion Process
Feature scale, with only minor inference
overhead. As a result, CBAM enables flexible
and efficient feature fusion by assigning
appropriate weights to different feature maps,
rather than merely adding or concatenating them.
In Diff-AIGAN, CBAM is inserted before the
generator takes the original image as input,
dynamically reweighting the feature maps and
guiding the network to focus on salient regions.
This multi-scale attention mechanism allows the
generator to capture richer multi-scale
information and concentrate perturbations on
critical areas of the image, thereby improving
the attack effectiveness of the generated
adversarial examples.
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2.4 Generator Module

The generator takes the fused feature maps as
input and produces the adversarial perturbation.
As illustrated in Fig. 4, it consists of four
residual blocks followed by three deconvolution
layers. the residual blocks are employed to
stabilize the training of the deep network,
mitigate performance degradation, and enhance
the feature representation capability. the
subsequent deconvolution layers progressively
transform the output feature maps of the residual
blocks into the final perturbation. For the first
two deconvolution layers, instance normalization
is applied after the deconvolution operation to
accelerate convergence, followed by a ReLU
activation function to alleviate the vanishing
gradient problem. the last deconvolution layer is
followed by a Tanh activation function, which
produces the final perturbation map.

2.5 Stochastic Differential Guide Module
(SDGM)
We introduce diffusion models (DMs) [17] to
construct the Stochastic Differential Guide
Module (SDGM), which guides the optimization
of perturbations, improves their controllability,
and encourages the generated adversarial
examples to remain visually similar to the
original images while preserving strong attack
capability. SDGM consists of a forward process
q and a reverse process pg. Let the original
image be drawn from xy~q(xo), where xg
denotes the initial clean state. the forward
process is discretized into T time steps and
gradually adds Gaussian noise to x,, producing a
sequence [xy, x5, Xp e xp]  that forms a
Markov chain. By accumulating the single-step
transitions, the conditional distribution of x;
given X, can be written in closed form as
q(xtlxo):N(xr; ffrxw(l—ﬂ_!r)‘r) (D
where N represents the Gaussian distribution, f;
is a fixed value in the interval (0, 1), which
increases with the increase of t, a; =1 — f3¢,

and _ ¢ the noise wvariance 1is
ty = “521 44}

determined by f; , and the mean value is
determined by ff; and the current noisy data
distribution.

The reverse process aims to recover image data
from the Gaussian noise data
distribution x7 ~ N(0,I) through a denoising
function. Using a resampling strategy, a
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modified U-Net network is trained as a denoiser,
and the denoising process is regarded as an
optimization process of parameters. the reverse
process pg is defined as Formula (2) and
Formula (3):

The reverse process aims to recover the image
data from Gaussian noise xp ~ N(0,I) by
progressively denoising. Following the standard
diffusion framework, we adopt a modified U-Net
as the denoising network and formulate the
reverse dynamics as a parametric optimization
problem. the Teverse process pg is defined as

pleor) = pler) [ [ o (e 1 1) ®
t=1

Pa(xe—1 | %) ~ N(x¢ 15 ug(xe, t), 021)
where 6 denotes the learnable parameters, and
ug(x¢,t) and o2 are the mean and variance of
the reverse transition, respectively. For
convenience, we denote the denoising step from
xetoxs_q =Po(xpt) asxe_y = Pglxe t)
where P6(-) is the denoising function.
Within SDGM, the perturbation is refined and
the adversarial example is generated as follows.
First, the forward process is run for K steps to
obtain a noisy sample xx ~ q( xx | xo) from the
original image x,. the perturbation & produced
by the generator is then injected at this
intermediate state by forming xy + ¢, which
serves as the starting point of the reverse process.
Finally, xx + ¢ is iteratively denoised from
t=Kdowntot = 0:

x =Pg(..(Po(Pe(xx +8,K), K — 1)...,0) #(4)

yielding the refined adversarial example x’

Through this guided diffusion procedure, SDGM
smooths and restructures the perturbation,
producing adversarial examples that are visually
close to the original images while remaining
highly effective in misleading the target model.

2.6 Discriminator Module

The discriminator is designed to distinguish
whether the input is a clean image or an
adversarial example. As illustrated in Fig. 5, it
consists of four convolutional layers for feature
extraction. Each convolutional layer employs a
3x33 \times 33%3 kernel with a stride of 1. After
each convolution, batch normalization is applied
to accelerate training and improve generalization,
followed by a LeakyReLU activation function to
introduce nonlinearity. the final layer maps the
extracted features to a single scalar, which is
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passed through a Sigmoid function to produce a
confidence score: values closer to 1 indicate that
the input is more likely to be a clean image,
whereas values closer to 0 suggest that the input
is more likely to be an adversarial example.
Attacker Module

The Attacker module receives feature maps of
the target image and generates initial
perturbations using the PGD algorithm. By
exploiting multi-level feature information, it
produces adversarial perturbations that remain
highly similar to the original image in
appearance. This process ensures that the
perturbations can effectively mislead the target
model’s classification while inducing minimal
perceptual distortion, thereby improving the
realism of the adversarial examples.

The adversarial example maps generated by the
Attacker module are then fed into the
discriminator D  for joint training, which
effectively strengthens the discriminator and, in
turn, facilitates the generation of higher-quality
adversarial examples.

2.7 Loss Function

The training objective of Diff-AIGAN consists
of three components: the adversarial loss Lgax,
the misclassification loss L,q, for the target
model f, and the soft hinge loss Liinge that

constrains the perturbation magnitude. the

adversarial loss Lgan encourages the generator

to produce samples that are difficult for the

discriminator to distinguish, and is defined as
Lgan = Ex, logD (xg) + Ey, log(l - D(x, ))

where D(:)  denotes the output

(4)
of the

discriminator, x; is the clean image, and x s

the corresponding adversarial example.

The misclassification loss L.g, is computed
based on the output of the target model f. It
guides the generator to produce adversarial
examples with strong attack capability by
encouraging a significant discrepancy between
the predictions on x, and e

Late = Ex ls(x ) (5)

where i denotes the loss function used to train
f

the target model f.

To limit the perturbation magnitude and preserve

the realism and naturalness of adversarial

examples, we adopt a norm-based soft hinge loss

L to stabilize the training of the generative
hinge
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model:

Lyinge = Ex, max(0, 1l 8 ll;— ¢) (6)
where ccc is a margin hyperparameter and
d\deltad denotes the generated perturbation.
Therefore, the overall training objective of Diff-
AIGAN is given by

L =L+ algan + BLuinge Q)
where a and [ are hyperparameters that control
the relative contributions of the adversarial loss
and the soft hinge loss, enabling a better trade-
off between attack strength and perturbation
regularization.

3 Experimental Design and Result Analysis

3.1 Datasets

To evaluate the performance of Diff-AIGAN in
generating adversarial examples, experiments
are conducted on the MNIST and CIFAR-10
datasets. the MNIST dataset consists of 70, 000
grayscale 1images of handwritten digits,
including 60, 000 training samples and 10, 000
test samples, each with a resolution of 28 x 28.
the CIFAR-10 dataset contains RGB color
images from 10 classes, with 50, 000 training
samples and 10, 000 test samples, and each
image has a resolution of 32 x 32.

3.2 Evaluation Metrics
To evaluate the performance of the proposed
Diff-AIGAN model, we adopt classification
accuracy (ACC), attack success rate (ASR), and
the Lg, L;, and L, norms as evaluation metrics.
ACC measures the classification capability of
the target model on clean images; a higher ACC
indicates a stronger classifier and thus provides a
more reliable basis for assessing the
effectiveness of the attack model. Let N denote
the number of clean images and mmm the
number of images correctly classified by the
target model. ACC is defined as

ACC = % = 100% (8)
ASR measures the ability of the attack model to
mislead the target model. A higher ASR implies
a stronger attack capability. Let N4, denote the
total number of generated adversarial examples,
and n the number of adversarial examples that
successfully fool the target model. ASR is
defined as

ASR = —

x 100% (9
adv

The Ly norm represents the number of pixels that
are modified in the adversarial example
compared with the original image, constraining
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how many pixels can be altered but not the
magnitude of each change. A smaller
LOL OLO  value indicates fewer modified
pixels and thus sparser perturbations. the I,
norm is the sum of absolute differences between
the adversarial example and the original image at
all pixel locations; a larger L; norm indicates a
more pronounced overall difference. the L, norm
is defined as the square root of the sum of
squared pixel-wise differences, providing a
trade-off between the number and magnitude of
modifications. A smaller L, norm implies that
the overall perturbation added to the image is of
lower magnitude.

3.3 Experimental Settings

All experiments are conducted on a Linux
platform running Ubuntu 18.04.6 LTS (64-bit),
equipped with an Intel(R) Xeon(R) Gold 5218
CPU @ 2.30 GHz, 240 GB of RAM, and an
NVIDIA A100 GPU.

For training the target models, we use the Adam
optimizer with an initial learning rate of 0.001.
the models are trained for 120 epochs with a
batch size of 128. the learning rate is reduced by
a factor of 10 at the 50th and 80th epochs.

For training the proposed attack model Diff-
AIGAN, we adopt a batch size of 64 and use
Adam with the same initial learning rate of 0.001.
the model is trained for 100 epochs, and the
learning rate is decayed by a factor of 10 at the
50th and 80th epochs. the perturbation threshold
is set to 0.3.

Due to inference-time and memory constraints,
we employ a Denoising Diffusion Implicit
Model (DDIM) with an accelerated sampling
strategy. Specifically, the original diffusion
process with 7=1000 time steps is subsampled to
Ty = 40 steps. We then set K = 0.27 = 200 in the
original time scale, which corresponds to a
subsequence length of k;=8 =8 in the
subsampled schedule. SDGM is run with the
reduced number of steps k; « K to refine the
perturbations and  generate  high-fidelity
adversarial examples.

3.4 Experimental Result Analysis

In the untargeted attack setting, the time required
by different methods to generate 500 adversarial
examples against the LeNetC model on the
MNIST test set is reported in Table 1. During
measurement, we ignore the time for loading the
model and dataset, and only record the time
spent on adversarial example generation.
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AdvGAN and AIGAN achieve the fastest
generation speed, requiring less than 0.01 s to
produce 500 adversarial examples, whereas the
C&W attack is the slowest, taking approximately
3 hours for the same number of samples. Diff-
AIGAN is slightly slower than AIGAN but still

Industry Science and Engineering Vol. 2 No. 10, 2025

significantly faster than C&W. This is because
Diff-AIGAN introduces additional feature fusion
and perturbation refinement operations during
generation, which increase the model complexity
and thus incur extra computational overhead.

Table 1. Attack Success Rates of Different Methods under Adversarial Training Defenses

Method [FGSM C&W PGD

advGAN

AIGAN Diff-AIGAN

Time 0.06s >3h 0.07s

0.01s

0.01s 0.5s

3.4. 1 Evaluation of Attacks Without Defense

In the absence of any defense mechanism, we
evaluate the attack success rates of different
generation algorithms on the MNIST and
CIFAR-10 datasets. On MNIST, Diff-AIGAN
achieves attack success rates above 99% when
attacking the LeNetC and VGGI11 models. On
CIFAR-10, Diff-AIGAN attains attack success
rates above 95% against both ResNetl8 and
ResNet32. As reported in Table 2, Diff-AIGAN
consistently achieves the best performance
across all target models compared with the other
attack methods.

Among the baselines, FGSM exhibits the lowest
attack success rate on all target models. For

example, when attacking VGGI11, its attack
success rate is only 56.61%, which is
substantially lower than that of the other
methods. Except for the VGGI11 case, Diff-
AIGAN also surpasses AdvGAN and AIGAN on
all models. More specifically, on MNIST, the
attack success rate of Diff-AIGAN against
LeNetC is improved by 1.14% and 0.64% over
AdvGAN and AIGAN, respectively; on CIFAR-
10, its attack success rate against ResNetl8 is
increased by 1.63% and 0.14% compared with
these two methods. These results demonstrate
that the adversarial examples generated by Diff-
AIGAN are more effective in misleading the
target models.

Table 2. Attack Success Rates of Different Methods on MNIST and CIFAR-10

Dataset [Target modelslACC (%) ASR(%)
FGSM [C&W |DeepFool |AdvGAN |AIGAN Diff-AIGAN

IMNIST |[LeNetC 99.60 94.04 96.67 195.16 97.90 98.40 99.04

VGGl11 99.36 56.61 [87.50 [86.04 99.65 99.58 99.28
CIFAR-|ResNet18 94.74 90.69 [93.75 193.22 94.52 96.01 96.15
10 ResNet32 93.25 90.06 90.30 91.67 94.70 95.29 96.43
We also compute the norm values of  values, its outputs exhibit high visual fidelity.
perturbations generated by different attack  More specifically, on MNIST, Diff-AIGAN

methods to assess the magnitude of the induced
changes. As representative examples, we report
the results for attacks on LeNetC using MNIST
and on ResNet32 wusing CIFAR-10, as
summarized in Table 3. Among all methods,
FGSM yields the worst performance in terms of
perturbation norms.

Overall, Diff-AIGAN achieves loweLyr and L,
norms than AdvGAN and AIGAN, and shares
the best results with the C&W attack on two
norm-based metrics. Since C&W produces
adversarial examples with very small norm

consistently outperforms AdvGAN and AIGAN
in terms of the Ly norm and attains three best
norm scores, with an Ly value of only 150.24.
On CIFAR-10, Diff-AIGAN achieves an L;
norm as low as 12.8, which is substantially
smaller than those of the other methods. These
results indicate that the perturbations generated
by Diff-AIGAN are sparser and of lower overall
magnitude, enabling the construction of more
realistic and less perceptible adversarial
examples.

Table 3. Average Norms Between Adversarial Examples and Original Images for Different

Methods

norm Datasets FGSM  |Deepfool C&W AdvGAN AIGAN Diff-AIGAN
" MNIST 780.79  1463.69 784.02  1454.77 389.10 150.24

0 CIFAR-10  [3054.4 [3052.2 2951.5 30524 3049.8 3020.1
" MNIST 373.22 3299 38.98 83.11 58.26 22.95

1 CIFAR-10  [520.30  [24.28 56.16 221.03 131.07 12.8
" MNIST 13.72 2.21 1.88 3.95 3.41 2.79

2 CIFAR-10  9.85 0.68 1.51 4.28 4.09 3.69
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3.4. 2Evaluation of Attacks With Defense

In the defended setting, an attack is considered
effective if the adversarial examples can still
successfully mislead the target model after

defense mechanisms have been applied.
Adversarial training is a widely used defense
strategy, in which adversarial examples

generated by the attack model are combined with
clean images to form an augmented training set
for the target model, thereby improving its
robustness.

In this work, we adopt three representative
adversarial training schemes as defenses:
standard FGSM-based adversarial training (Adv)
[6], ensemble adversarial training (Ens) [18],
and iterative adversarial training (Iter-Adv) [19].
Specifically, clean images and adversarial
examples are mixed at a 1:1 ratio to construct a
new training dataset for the target models. This
setup is used to evaluate the effectiveness of
Diff-AIGAN under various defense strategies.

55.22

- FGSM

= AdVGAN
50| W AIGAN
Diff-AIGAN

47.88 Y

ASR (%)

Adv ter-Adv

Ens
efense method

(a) Attack on LeNet C under Defense

4287

= rGsM
- AdVGAN
- AIGAN

Dff-AIGAN 5530

3233

25.66

ASR (%)

13.45 12,67

Adv Iter-Adv

Ens
defense method

(b) Attack on ResNet32 under Defense

65.24

. FGSM

e AdVGAN

. AIGAN
Diff-AIGAN

57.66
53.34

50 47.88

fter-Adv

Ens
defense method

(c) Attack on Wide-ResNet34 under Defense
Figure 6. Attack Success Rates of Different
Methods under Defense.
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The Attack Success Rates of FGSM, AdvGAN,
AIGAN, and Diff-AIGAN under different
adversarial training strategies. As shown in the
Fig, Diff-AIGAN consistently achieves the
highest attack success rate when attacking
defended target models. In particular, Fig. 6(c)
illustrates that, on CIFAR-10 against the Wide-
ResNet34 model, Diff-AIGAN exhibits the most
pronounced advantage. Compared with AIGAN,
the attack success rate of Diff-AIGAN is
improved success rate of Diff-AIGAN is
improved by 16.91% under Adv defense, by
10.83% under Ens defense, and by 17.36%
under Iter-Adv  defense. In all other
configurations, Diff-AIGAN also outperforms
FGSM, AdvGAN, and AIGAN in terms of
attack success rate. These results clearly
demonstrate that Diff~AIGAN remains highly
effective even in the presence of adversarial
training defenses.

3.4.3Ablation Experiment

To further validate the effectiveness of the key
components in Diff-AIGAN, we conduct
ablation studies on the MNIST dataset against
the LeNetC model and on the CIFAR-10 dataset
against the ResNet32 model. Starting from the
AIGAN baseline, we denote the variant that only
incorporates the adaptive spatial feature fusion
module as “+CBAM?”, and the variant that only
employs the Stochastic Differential Guide
Module as “+SDGM”.

As shown in Table 4, Diff-AIGAN achieves the
best performance across all evaluation metrics,
indicating that the full method, which combines
feature fusion and perturbation refinement, can
simultaneously improve the attack success rate,
increase perturbation sparsity, and reduce
perturbation magnitude. Specifically, compared
with AIGAN, the “+CBAM” and “+SDGM”
variants improve the attack success rate by
0.47% and 0.53% on MNIST, and by 0.53% and
0.94% on CIFAR-10, respectively. This
demonstrates that the feature fusion strategy,
which integrates global semantics and local
details, enables the generator to concentrate
perturbations on critical regions of the image,
making the resulting adversarial examples more
likely to mislead the target model.

Moreover, relative to “+CBAM?”, the “+SDGM”
variant yields consistently lower Lg, Lq, and L,
norms, indicating that SDGM effectively refines
and controls the perturbations. the resulting
perturbations are sparser and of smaller overall
magnitude, thereby enhancing the realism and



g Academic Education
ikt Publishing House

-AE

Industry Science and Engineering Vol. 2 No. 10, 2025

stealthiness of the generated adversarial examples.
Table 4. Ablation Study on the MNIST and CIFAR-10 Datasets.
Datasets Method IASR (%) Lo Ly L,
AIGAN 98.40 389.10 58.26 3.41
+CBAM 98.87 211.42 37.48 3.82
MNIST 'SDGM 98.93 189.26 28.77 3.11
Diff-AIGAN 99.04 150.24 22.95 2.79
AIGAN 95.29 3049.8 131.07 4.09
+ CBAM 95.82 3024.88 32.84 4.11
CIFAR-10 ESpom 96.23 3030.15 20.55 3.89
Diff-AIGAN 96.43 3020.10 12.80 3.69

4. Conclusion

In this paper, we propose an improved image
adversarial example generation method, termed
Diff-AIGAN. By incorporating the CBAM
module, Diff-AIGAN effectively exploits both
global semantic information and local details of
the input images, enabling the generator to
concentrate perturbations on critical regions and
thereby enhancing the attack effectiveness. In
addition, a Stochastic Differential Guide Module
(SDGM) is designed based on the reverse
process of diffusion models to refine the
perturbations. SDGM improves the
controllability of the perturbations, increases
their sparsity, and reduces their magnitude,
leading to more realistic adversarial examples.
Experimental results demonstrate that the key
perturbations generated by Diff-~AIGAN can
successfully mislead the target models while
remaining sparse and low in amplitude, and the
resulting adversarial examples appear more
natural and less perceptible than those produced
by the baseline methods.

Although Diff-AIGAN is capable of generating
high-quality adversarial examples, it still has
certain limitations. Compared with AIGAN, the
proposed framework has a more complex
architecture, =~ which  results in  higher
computational and memory costs during
adversarial example generation. In future work,
we plan to further lighten the network structure
to reduce the time and memory overhead, while
preserving the high quality and strong attack
capability of the generated adversarial examples.

References

[1] Qian S, Ning C, Hu Y. MobileNetV3 for
image classification [C]/2021 IEEE 2nd
International Conference on Big Data,
Artificial Intelligence and Internet of Things
Engineering (ICBAIE). IEEE, 2021:490-497.

[2] Xie X, Cheng G, Wang J, et al. Oriented R-

38

CNN for object detection [C] //Proceedings
of the IEEE/CVF international conference
on computer vision. 2021:3520-3529.

[3] Wang Min, Li Sheng, Zhuang zhihao, et al.
Ground-based Cloud Graph Segmentation
Method Based on Deep Learning Semantic
Segmentation Network. 2023, 23(31). (in
Chinese)

[4] Chib P S, Singh P. Recent advancements in
end-to-end autonomous driving using deep
learning: A survey [J]. IEEE Transactions on
Intelligent Vehicles, 2023, 9(1):103-118. [5]
Szegedy C, Zaremba W, Sutskever I, et al.
Intriguing properties of neural networks [J].
arXiv preprint arXiv:1312.6199, 2013.

[6] Goodfellow I J, Shlens J, Szegedy C.

Explaining and harnessing adversarial

examples [J]. arXiv preprint

arXiv:1412.6572, 2014.

Kurakin A, Goodfellow 1 J, Bengio S.

Adversarial examples in the physical world

[M]//Artificial ~intelligence safety and

security. Chapman and Hall/CRC, 2018:99-

112.

Madry A, Makelov A, Schmidt L, et al.

Towards deep learning models resistant to

adversarial attacks [J]. arXiv preprint

arXiv:1706.06083, 2017.

[9] Moosavi-Dezfooli S M, Fawzi A, Frossard P.
Deepfool: a simple and accurate method to
fool deep neural networks [C]//Proceedings
of the IEEE conference on computer vision
and pattern recognition. 2016:2574-2582.

[10] Carlini N, Wagner D. Towards evaluating
the robustness of neural networks [C]//2017
ieee symposium on security and privacy (sp).
Ieee, 2017:39-57.

[11] Xiao C, Li B, Zhu J Y, et al. Generating
adversarial examples with adversarial
networks [J]. arXiv preprint
arXiv:1801.02610, 2018.

[12] Jandial S, Mangla P, Varshney S, et al.
Advgan++: Harnessing latent layers for

[8]



Academic Education

Industry Science and Engineering Vol. 2 No. 10, 2025 GH Publishing House

adversary generation [C]//Proceedings of the
IEEE/CVF International Conference on
Computer Vision Workshops. 2019:0-0.

[13] He X, Luo Z, Li Q, et al. DG-GAN: a high
quality defect image generation method for
defect detection [J]. Sensors, 2023,
23(13):5922.

[14] Zhu Z, Chen H, Wang X, et al. Ge-advgan:
Improving the transferability of adversarial

samples by  gradient  editing-based
adversarial generative model
[C]//Proceedings of the 2024 SIAM

international conference on data mining
(SDM). Society for Industrial and Applied
Mathematics, 2024:706-714.

[15] Bai T, Zhao J, Zhu J, et al. Ai-gan: Attack-
inspired generation of adversarial examples
[C]//2021 IEEE International Conference on
Image Processing (ICIP). IEEE, 2021:2543-

39

2547.

[16] Woo S, Park J, Lee J Y, et al. Cbam:
Convolutional block attention module
[C]//Proceedings of  the European
conference on computer vision (ECCV).
2018:3-19.

[17] Ho J, Jain A, Abbeel P. Denoising diffusion
probabilistic models [J]. Advances in neural
information processing systems, 2020,
33:6840-6851.

[18] Tramer F, Kurakin A, Papernot N, et al.
Ensemble adversarial training: Attacks and
defenses [J]. arXiv preprint
arXiv:1705.07204, 2017.

[19] Madry A, Makelov A, Schmidt L, et al.
Towards deep learning models resistant to
adversarial attacks [J]. arXiv preprint
arXiv:1706.06083, 2017





