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Abstract: This paper establishes a kinematic
model of the pantograph based on Cartesian
coordinates. On this basis, the dynamic
model of the pantograph is derived using the
first-kind Lagrange equations. Combined
with the derived constraint equations, the
dynamic characteristic equations of the
pantograph are solved by numerical analysis.
The derived kinematic and dynamic
characteristic equations are applied to the
structural analysis and optimization of
pantographs for trunk railways and urban
rail transit, providing theoretical support for
pantograph design. Taking a typical metro
pantograph as an example, the dynamic
characteristic equations are solved, yielding
the following conclusions: the motion
trajectory of the panhead follows an "S"
shape distribution; formulas for the lifting
force, panhead displacement, and static
contact force are obtained; significant
vibration occurs between the panhead and
the upper frame during the lifting and
lowering process; and the natural frequency
of the pantograph is 7.6 Hz.

Keywords: Pantograph; Kinematics;
Dynamics; Cartesian Coordinates

1. Introduction
The pantograph is a current collection device
installed on the upper part of electric trains. It
works in conjunction with the overhead contact
line to complete the function of electrical
energy transmission. Kinematic analysis of the
pantograph is an important method for
designing its geometric parameters, while
dynamic analysis is the foundation and
prerequisite for studying pantograph-catenary
coupled vibration.
Many scholars domestically and internationally

have conducted research on the kinematics and
dynamics of pantographs. Literature [1] lists the
geometric constraint equations of the
pantograph and uses ADAMS for dynamic
simulation, providing the relationship between
geometric parameters and kinematic evaluation
parameters. Literature [2] uses vector dynamics
methods to establish a kinematic model of the
pantograph and solves the mathematical
equation set via Simulink. Literature [3] takes
the DSA series pantograph as an example,
proposes a mechanical model considering the
planar motion of the slide plate and stent and
provides the differential equations of motion for
the pantograph. Literature [4] establishes a
geometric relationship model of the pantograph
frame structure, uses the panhead motion as the
optimization target, and applies single-objective
optimization technology to optimize the
geometric parameters of the Schunk-type
pantograph. Literature [5] uses the multi-body
dynamics software Simpack to establish a three-
dimensional dynamic model of the pantograph,
analyzing panhead trajectory, lifting torque, and
natural frequency. Literature [6-10] provides
the geometric motion relationships of the
pantograph, uses the second-kind Lagrange
equations to establish the dynamic model of the
pantograph, considers the double four-bar
linkage and panhead swing, resulting in a
relatively complex model. Literature [11-13]
uses the first-kind Lagrange equations to
establish the dynamic model of the CX-type
pantograph, provides hinge analysis and data
for the pantograph, and conducts joint
pantograph-catenary dynamic simulation with a
finite element model of the catenary, but these
references do not provide the corresponding
mathematical model.
In summary, this paper first derives the
constraint equations of the pantograph to
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establish the kinematic model, then derives the
dynamic model using the first-kind Lagrange
equations. The constraint equations connect the
kinematic and dynamic analyses. Using
numerical methods, the motion parameters and
force parameters of the pantograph are obtained,
providing theoretical support for the structural
design and optimization of the pantograph.

2. Kinematic Modeling of Pantograph
Pantographs come in various types, but their
main structures generally include the panhead,
upper frame, lower arm rod, push rod, balance
rod, base frame, and transmission mechanism.
The pantograph is a typical double four-bar
linkage structure. The base frame, lower arm
rod, push rod, and upper frame constitute the
first four-bar linkage. The lower arm rod, upper
frame, balance rod, and panhead suspension
constitute the second four-bar linkage. The
second four-bar linkage ensures that the rotation
angle of the panhead swings as little as possible
in space, keeping the panhead level. The
structure of the pantograph is spatially
symmetrical and can be simplified into a planar
physical model. To simplify the physical model
of the pantograph, the panhead is assumed to be
reduced to a particle with a rotation angle
constraint, the second four-bar linkage structure
is neglected, and the focus is on analyzing the
mechanical characteristics of the frame part.
The pantograph is equivalent to 4 bodies: the
lower arm rod, push rod, upper frame, and
panhead. A body-fixed coordinate system is
established at the center of mass of each body.
Each body has 3 degrees of freedom, totaling 12
degrees of freedom, as shown in Eq. (1). The
rotation point of the lower arm rod is taken as
the origin of the inertial coordinate system for
the pantograph, and the relevant positive
directions are defined, as shown in Fig. 1.
According to the local method referenced in
[14], the configuration constraint equations for
kinematics are established, as shown in Eq. (6).
Five vector equations (matrices are represented
in bold below) constrain 10 degrees of freedom,
where **r** is the absolute translation
coordinate vector of the body-fixed frame,

**A** is the direction cosine matrix, as shown
in Eq. (8), **ρ** is the relative translation
coordinate vector of a fixed point on the rigid
body relative to the body-fixed frame.
Additionally, there is an assumption that the
rotation angle of the panhead has an absolute
angle constraint, as shown in Eq. (7). The
kinematic model of the pantograph has only 1
independent degree of freedom. Expanding Eq.
(7) and combining the geometric dimensions of
each body shown in Fig. 2, the displacement
constraint equations are obtained as shown in
Eq. (9). The hinge types and coordinates are
listed in Table 1.
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Table 1. (Regular) Pantograph Hinge Types and Coordinates.
No. type bodyBα(α) bodyBα( '


 ) bodyBβ(α) bodyBβ( '


 ) Coordinates

1 r 1 l1/2, 0 0, 0
2 r 2 l2/2, 0 -d1, -d2
3 r 2 -l2/2, 0 3 -l3-l4, -d4
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4 r 1 -l1/2, 0 3 -l4, -d5
5 r 3 l5, 0 4 0, -d3
6 aϕ 4 0, 0 0

The additional driving constraint method is
used to solve the constraint equation set (9),
forming a closed set of mathematical equations.
Since the transmission mechanism of the
pantograph acts on the lower arm rod, applying
a force around the origin through the steel wire
rope causes the lower arm rod to rotate,
realizing the lifting and lowering of the
pantograph. In kinematic analysis, it is assumed
that the lower arm rod rotates at a constant
angular velocity ω, as shown in Eq. (10). The
relationship between the displacement of the
steel wire rope's action point at coordinates (x₀,
y₀) and the angular velocity is given by Eq. (11).
Theoretically, the pantograph's motion position
is determined by the displacement of the steel
wire rope. Combining Eqs. (9) and (10), and
given geometric parameters and angular
velocity, the pantograph's displacement at
different times is obtained. Differentiating Eqs.
(9) and (10) with respect to time yields the
corresponding velocity and acceleration
constraint equations. Eqs. (9) and (10) form a
set of nonlinear equations, which are solved
numerically using the Newton-Raphson method.

Figure 1. Kinematic Model of the
Pantograph

Figure 2. Schematic Diagram of Pantograph
Geometric Parameters

Figure 3. Constrained Dynamic Model of the
Pantograph

Figure 4. Static Model of the Pantograph

3. Dynamic Modeling of Pantograph
The kinematic model of the pantograph can
provide the motion displacement, velocity, and
acceleration at any time. The results of the
kinematic model can be used as initial
conditions for dynamics. However, the
kinematic model does not consider the inertial
effects of the pantograph and cannot fully
describe its motion regularity over a certain
period. Therefore, it is necessary to further
establish the dynamic model of the pantograph.
The dynamic model of the pantograph needs to
consider more mechanical characteristics.
Based on the kinematic model, a linear spring-
damper for the panhead suspension and a
torsional spring-damper for the lower arm rod
are added, as shown in Fig. 3. The forces on the
pantograph consist of the external force f₀,
internal forces f₁, f₁', and the inertial forces of
the bodies. If the panhead in Fig. 3 were
unconstrained, it would lift and lower freely
under the drive of the lifting force f₀.
In reality, the pantograph operates within a
certain height range, sliding in contact with the
contact wire at a specific height. Therefore, the
panhead is subject to the displacement
constraint of the contact wire. Under the action
of the lifting force, a contact force is generated
between the panhead and the contact wire. In a
static state, the static contact force between the
pantograph and the contact wire at different
heights should be constant: typically 70 N for
national railways and 110 N for metros.
Combining the actual operating conditions, the
constrained dynamic model of the pantograph is
established, as shown in Fig. 3. The number of
bodies is increased to 5. The fifth body is
assumed to be an exciter or the contact wire,
and its inertial force is neglected (mass and
inertia are very small). The fifth body and the
panhead are connected by a force element,
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representing the pantograph-catenary contact
force f_c, f_c'. At this point, the dynamic model
of the pantograph has 5 bodies and 15 degrees
of freedom, as shown in Eq. (12). The dynamic
equations of the pantograph are derived
according to the first-kind Lagrange equations,
as shown in Eq. (13), where Z represents the
augmented mass matrix, Φq represents the
Jacobian of the constraint equations, λ is the
Lagrange multiplier related to the constraint
forces, and Q represents the generalized force
matrix. Analyzing the constrained pantograph
model, it can be seen that the pantograph has
only two independent degrees of freedom: one
is the rotational degree of freedom of the lower
arm rod, and the other is the vertical degree of
freedom of the panhead. Therefore, there are 13
constraint equations. The J5 rotational hinge in
the kinematic analysis should be changed to a
relative position constraint hinge, only
constraining the x-direction displacement
between point g on the upper frame and point p
on the panhead. Eq. (6) is rewritten as Eq. (15).
At this point, the number of constraint
equations is 10. Additionally, three more
constraint equations are needed: the relative
displacement constraint Eq. (16), the absolute
angle constraint Eq. (17), and the driving
displacement constraint Eq. (18). Combining
constraint equations Φ¹to Φ¹³, the constraint
equation set for the dynamic model of the
pantograph is obtained as Eq. (19). Since Eq.
(13) introduces 13 unknown Lagrange
multipliers, 13 constraint equations Eq. (19)
must be added. Because the form of Eq. (19)
differs somewhat from the generalized
acceleration matrix in Eq. (13), to abbreviate
the matrix, Eq. (19) is differentiated twice with
respect to time to obtain the acceleration matrix,
as shown in Eq. (14). Eqs. (13) and (14) form a
mathematically closed set of equations for the
dynamic model of the pantograph. This
equation set can be transformed into a set of
first-order ordinary differential equations and
solved numerically using linear algebra
methods and ODE solvers. The specific solution
method refers to literature [15]. The
acceleration array γ in Eq. (13) is obtained from
Eq. (20). The generalized forces are given by
Eq. (21), where the force elements E₀, E₁, E₂ are
given by Eq. (23). The direction of the lifting
force is tangential to the circular motion with
the origin as the center and d₆ as the radius. The
initial conditions for solving the ODE are given

by Eq. (24), where the displacement initial
conditions need to add the driving displacement
y_c based on the kinematics, and the velocity
initial conditions are assumed to be 0.
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Since the pantograph is a constrained structure,
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it has an equilibrium state. It is necessary to
calculate the static equilibrium position of the
pantograph and the active forces and ideal
constraint forces in the equilibrium state, such
as studying the relationship between the lifting
force and the static contact force. When in static
equilibrium, the pantograph has no velocity or
acceleration. Eq. (13) can be rewritten as Eq.
(25). Using the LU decomposition condensation
method, the **Φq** matrix is decomposed into
the Jacobian of the independent variable array
**w** and the Jacobian of the dependent
variable array **u**, as shown in Eq. (26) and
(27). Eq. (26) is rewritten as Eq. (28) and
substituted into Eq. (27), obtaining the equation
set without the Lagrange multiplier term, Eq.
(29). Combined with Eq. (19), this forms the
closed-form nonlinear algebraic equations for
the static model of the pantograph.
In the dynamic model of the pantograph, there
is one driving force and one driving
displacement. The driving displacement is
included in the constraint equations, and the
driving force is in the generalized force matrix.
Both are time variables. If both are constants,
the dynamic equations can be simplified to
static equations for solution. When calculating
the static equilibrium problem of the
pantograph, the force elements are equivalent to
rigid connections, as shown in Fig. 4. At this
point, the driving constraint y₅ differs from y₄
by μ₀. The panhead constraint force, i.e., the
static contact force, can be obtained by
calculating the Lagrange multiplier using Eq.
(28).
Additionally, by removing the fifth body from
Eqs. (13) and (14) and deleting the
corresponding rows or columns in the matrices,
the dynamic model of the pantograph for free
lifting and lowering can be derived.

4. Example Analysis
Taking a typical pantograph commonly used in
metros as an example, the above method is used
to study the motion and forces of the

pantograph. The geometric parameters of a
typical metro pantograph are given in Table 2.
Table 2. Pantograph Geometric Parameters
Parameter Value Value Parameter Value

l1 1600 1180 l3 297
l4 578 1316 d1 723
d2 178 160 d4 170
d5 70 125 ϕ0 360

Note: Length unit is mm, angle unit is degree.
An important parameter in kinematic analysis is
the motion trajectory of the panhead and the
relationship between panhead motion and the
lifting angle. Assuming the pantograph rises at
an angular velocity ω = -1°/s, the horizontal and
vertical displacement coordinates of the
panhead are calculated, as shown in Fig. 5. It is
found that as the panhead height increases, the
horizontal displacement of the panhead first
decreases, then increases, and then decreases
again, forming an "S-shaped" motion,
consistent with the trend in the example in
literature [1]. The panhead has a horizontal
displacement amplitude of 29.37 mm.

Figure 5. Panhead Motion vs. Lifting Angle
Using the geometric relationship obtained from
the pantograph kinematic model analysis as the
initial condition for the static and dynamic
analysis of the pantograph, the static
equilibrium state of the pantograph is analyzed.
Table 3 provides the dynamic parameters of the
pantograph. The panhead stiffness and damping
in Table 3 are derived from the single-mass
stiffness-damping vibration test of the panhead.
The connection spring between body 5 and the
panhead is calculated based on the contact
stiffness given in EN50318. The rotational
damping of the lower arm rod is assumed to be
a small value.

Table 3. Pantograph Dynamic Parameters.
Parameter Value Parameter Value Parameter Value

m1 19.37kg m2 2.49kg m3 9.29kg
m4 15.03kg I1 7.77kgm-2 I2 0.41kgm-2
I3 5.37kgm-2 I4,I5 0.01kgm-2 m5 0.001kg
c1 5Ns/m c2 10Ns/deg μ1 m4g/k1
k0 50kN/m μ0 0.1m k1 30kN/m
m1 19.37kg m2 2.49kg m3 9.29kg

Industry Science and Engineering Vol. 2 No. 10, 2025

15



By adjusting the driving displacement y₅, the
displacements of other components at a certain
panhead working height are obtained. Applying
the lifting force, the corresponding panhead
constraint reaction force, i.e., the static contact
force, is calculated. A set of lifting force and
static contact force curves is calculated every
0.1 m in the range of 0.4 m to 1.4 m. Based on
the calculation results, the relationship curves
between lifting force and panhead vertical
displacement are plotted, as shown in Fig. 6. It
is found that with a constant output lifting force,
the static contact force decreases as the lifting
height increases; to maintain a constant static
contact force, the lifting force must increase
with the lifting height; a larger static contact
force requires a larger lifting force. The data
given in Fig. 6 is fitted with first-order
polynomial curves, resulting in three linear
fitting curves with very similar slopes.
Observing the three curves, it is found that the
vertical distances between the static contact
forces are basically equal. Weighted averaging
is performed on the fitted curves using lifting
force, lifting height, and static contact force,
resulting in Eq. (30), which is the calculation
formula for the lifting force. Taking a typical
metro pantograph as an example, the actual
parameters in Eq. (30) are a₁=4782, a₂=16.8,
a₃=1400. To maintain a constant static contact
force at different panhead heights, the lifting
force must vary.

Figure 6. Relationship between Lifting Force
and Panhead Vertical Displacement.

0 1 2 3 4cf a a f a y    (30)
The dynamic model of the pantograph can be
used to study the lifting and lowering process.
Assuming the initial condition is the lowered
position of the pantograph, and the lifting force
is a step signal: constant force of -8700 N for the
first 5 seconds, and constant force of -6500 N for
the next 5 seconds, the accelerations of various
components during pantograph lifting and
lowering are studied. As shown in Fig. 7, it is
found that the acceleration change of the
panhead is the largest, followed by the
acceleration change of the upper frame, while the

changes of the lower arm rod and the push rod
are very small, indicating that the main
components affecting the dynamic performance
of the pantograph are the panhead and the upper
frame.

Figure 7. Acceleration Time History During
Lifting and Lowering.

Finally, the inherent characteristics of the
pantograph are studied. Taking the panhead
vertical displacement of 1.4 m as the initial
condition, the displacement y₅ is adjusted to
output a constant amplitude of 0.01 m at
frequencies from 0.1 to 20 Hz, studying the
amplitude-frequency response of the
pantograph at different frequencies. One
calculation case corresponds to one frequency.
Fig. 8 shows the variation curves of the vertical
vibration displacement coordinates of various
components with time under 7.6 Hz excitation.
Fig. 9 shows the vibration amplitudes of various
components versus frequency, i.e., the
amplitude-frequency response. It is found that
at 7.6 Hz, the vertical amplitudes of the
pantograph components have extreme values.
7.6 Hz should be a natural frequency of this
type of pantograph. The panhead has an
inflection point at 0.15 Hz, while other
components do not, so it is not considered a
natural frequency. Theoretically, two
independent degrees of freedom should have
two natural frequencies, but one independent
degree of freedom is the rotation of the lower
arm rod, which has no spring, so the natural
frequency there is infinitely close to 0.

Figure 8. Amplitude Time History of
Components under 7.6 Hz Excitation

Displacement Frequency.
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Figure 9. Amplitude-Frequency Response
Curves of Components.

5. Conclusion
Based on Cartesian coordinates, the kinematic
model of the pantograph is established, and the
constraint equations are derived. The dynamic
model of the pantograph is established using the
first-kind Lagrange equations. Combined with
the constraint equations, the system is solved
through numerical methods. The kinematic and
dynamic calculation method based on Cartesian
coordinates can be applied to the structural
analysis and optimization of pantographs for
trunk railways and urban rail transit, providing
theoretical support for pantograph design.
Using the above algorithm, the motion laws and
mechanical performance of the pantograph are
studied. Taking a typical metro pantograph as
an example, the following results are obtained:
the motion trajectory of the panhead follows an
"S" shape distribution; calculation formulas for
the lifting force, panhead displacement, and
static contact force are derived; significant
vibration occurs between the panhead and the
upper frame during the lifting and lowering
process; and the natural frequency of the
pantograph is 7.6 Hz.
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