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Abstract: In complex multivariate time-
series anomaly detection tasks, traditional
methods often rely on time-domain modeling
while neglecting frequency-domain
information, leading to limited performance.
To address this issue, this study proposes an
innovative time-frequency anomaly detection
framework, FTAD, which combines time-

domain and frequency-domain features
through adaptive graph attention and
frequency-domain attention mechanisms,

significantly improving anomaly detection
performance for multivariate time-series
data. the model first decomposes the time-
series data wusing Exponential Moving
Average (EMA), then processes the time-
domain and frequency-domain features
separately using Adaptive Graph Attention
(AGAT) and Frequency-domain Attention
(FreRA), respectively. Finally, the mutual
inverse entropy weighting (REFusion)
mechanism is used to dynamically and
adaptively fuse time-domain and frequency-
domain features. Experimental results show
that FTAD outperforms existing methods on
multiple  datasets, demonstrating its
effectiveness in complex time-series data.
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1. Introduction

In these applications, time series anomaly
detection, as a key technology, can effectively
identify potential abnormal conditions of the
system by mining abnormal behaviors that
deviate from normal patterns in the data,
thereby providing strong support for ensuring
system stability and operational security[1] .
For example, in industrial control systems,
anomaly detection on sensor and network data
can realize timely early warning of equipment
faults and potential attacks [2] , and in multi-
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channel physiological signal analysis, real-time
electrocardiogram waveform anomaly
identification based on deep learning models
helps to improve the accuracy and efficiency of
diagnosis [3] .

Although anomaly detection technology has
been widely applied in fields such as industrial
monitoring and financial risk control, accurate
identification ~of anomalies remains a
challenging task when dealing with time series
data with complex and diverse structures [4] .
However, schemes based on a single domain all
have inherent limitations. Time-domain
methods, although good at characterizing short-
term dependencies and nonlinear dynamics,
often ignore spectral structures and are
insufficient in representing strong periodicity,
harmonic patterns, and cross-scale oscillations;
frequency-domain methods, although able to
highlight periodicity and repeated fluctuations,
find it difficult to capture the local temporal
context of sudden events or non-stationary
anomalies, and performing Fourier transform on
the whole sequence easily introduces noisy
frequencies and causes spectral leakage and
aliasing, thereby masking key patterns and
interfering with effective information extraction
[5] . For example, FEDformer [6] introduces
Fourier enhanced blocks and wavelet enhanced
blocks into the Transformer framework,
mapping time series signals to the frequency
domain, capturing key structures, and then
returning to the time domain for prediction. F-
SE-LSTM [7] combines FFT with the attention
channel mechanism SENet to extract frequency-
domain features, and uses LSTM to model
cross-period frequency dependencies. Therefore,
relying only on a single domain makes it
difficult to comprehensively cover multiple
types of anomalies.

We propose FTAD, an unsupervised time—
frequency fusion anomaly detection framework
that uses EMA-based decomposition, adaptive
graph attention, improved frequency-domain
attention, and entropy-based feature fusion, and
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combines prediction and reconstruction errors  used. A threshold is set, and the observations
to robustly detect complex anomalies, achieving are evaluated according to the anomaly score;
superior performance on multiple public that is, when the anomaly score obtained for a

datasets. time window exceeds the threshold, the window
is marked as anomalous. Here, a binary

2. FTAD Model indicator is used to represent whether the data
point at time stamp ttt is anomalous (1 for

2.1 Problem Definition anomalous and 0 for normal).

Given a multivariate time series X, as shown in

Eq. (1), 2.2 Overall Framework

X = {x, X500 X1, X, € RY (1)  This paper proposes a time—frequency adaptive

fusion framework FTAD based on trend—
seasonal decomposition and an uncertainty-
driven mechanism. the overall architecture of
FTAD is shown in Fig. 1 and mainly consists of
five stages: time series decomposition, time-
and frequency-domain analysis, feature fusion,
prediction and reconstruction, and anomaly
detection.

where the two parameters respectively denote
the dimension of sensors or indicators and the
sequence length. the main task is, in an
unsupervised setting, to determine whether
there exist potential anomalies within a sliding
time window. During the inference stage, the
weighted sum of the two absolute errors,
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Figure 1. Overall Architecture of the Model

differentiable soft adjacency matrix, which is
2.3 Adaptive Graph Attention Module updated via backpropagation with respect to the
This paper proposes an adaptive graph attention downstream task loss and thus adapts to both
mechanism (AGAT), which, during end-to-end the data domain and the objective function,
training, simultaneously recovers the topology enabling it to approximate the true time-varying
and learns attention, and uses a task-adaptive topology without any external graph prior.
soft adjacency matrix to replace hard-coded Parallel multi-head graph attention is then
graph structures, thereby more robustly applied on this soft graph. the input features are
characterizing implicit and time-varying linearly projected, and edge scores are
channel dependencies. computed following the idea of GAT:
Let the input be the windowed time-series e :LeakyReLU(a [h’. ||h'.]),ae:‘) i (3)
block H e R*“" (batch size B, number of ! Y
variables C, feature length T).
First, a trainable node embedding is learned for
each variable Ee 3 ““, and perform row-wise

and employ adjacency-gated masked
normalization to suppress non-neighborhood
interference, and obtain after multi-head

vector normalization to obtain a similarity aggregation

matrix, and then construct a dynamic adjacency h = O'(Zaf-,k) w® hj) 4)
matrix using a combination of tanh and ReLU ) a

functions: After concatenating the outputs of all heads

; long the feature dimension, a linear projection
= e ) along nsion, proJ
4, ReLU(tanh(e e/)) @) and a second-level single-head attention are

where 4, is a nonnegative, dense, and  applied to obtain the final output H™ € *< .
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This module restores the topological structure
by dynamically learning a soft adjacency matrix
and uses this structure as a prior for attention
computation. In this way, AGAT can adaptively
adjust the graph structure in highly variable
time series data instead of relying on a pre-
defined graph, which enables it to handle
dependency relationships in different scenarios
more flexibly, especially when dealing with
data with complex time-varying topologies, and
to cooperate with the subsequent frequency-
domain analysis and feature fusion modules
(such as REFusion) to jointly improve the
sensitivity and robustness of anomaly detection.
the model framework is shown in Fig. 2.

Normalization

Figure 2. Framework of the Adaptive Graph
Attention Module

2.4 Reciprocal Entropy-Weighted Fusion
Module

In anomaly detection tasks for multivariate time
series data, traditional time—frequency fusion
methods usually rely on fixed weights or prior-
based fusion schemes, which have certain
limitations in dealing with the complexity and
dynamics of the data. To address this problem,
this study proposes an innovative Reciprocal
Entropy-weighted Fusion module (REFusion),
which adaptively adjusts the contributions of
time-domain and frequency-domain features,
breaking through the limitations of traditional
fixed weighting and truly realizing dynamic
time—frequency fusion. In traditional methods,
the fusion of time-domain and frequency-
domain features usually depends on fixed
weights, ignoring the differences in the
importance of each feature under different data
patterns. In contrast, the REFusion module
dynamically evaluates the uncertainty of each
branch based on information entropy, thereby
automatically adjusting the contributions of
time-domain and frequency-domain features,
and adopts a reciprocal weighting strategy—
large entropy with small weight and small
entropy with large weight—to achieve a
parameter-free, differentiable, and stable
adaptive fusion.

Let the output of one branch be z € R*“" . For
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each sample, it is mapped to a differentiable
probability distribution, and then a temperature-
scaled softmax is applied to it:

P= softmax(%j ,T>0 Q)

Accordingly, the normalized sample-level
Shannon entropy is computed and further
normalized to [0, 1] by log N:

H(z)= —%pi log p.s (6)
70y = HE) ©)
H(z) log N €[0,1]

The larger A is, the more dispersed the energy
and the more chaotic the structure; the smaller

H is, the more concentrated the energy and the
more definite the pattern. For the two branches,

we obtain A, =H(t,) and A, =H(f,)

respectively, and define the reciprocal weights.

H,
= Fihs
t+A/»+{;‘ (8)
Ht
O.’f :W,at +(Zf ~1
(T, +E (9)

and then reweight the outputs of the time-
domain and frequency-domain branches:

f=artout’f=af out (10)
After concatenating the inputs, the fused term
fused = Concat(x,7, /) is obtained and then fed

into the GRU for temporal fusion.

The FTAD model proposed in this paper is
different from existing traditional methods; by
integrating adaptive graph attention, the
frequency-domain attention mechanism, and the
reciprocal entropy-weighted fusion module, it
realizes an organic combination of time-domain
and frequency-domain features. In particular,
the REFusion module adaptively adjusts the
weights by computing the uncertainty of the
features, thereby enhancing the effectiveness of
time—frequency feature fusion, fully reflecting
the collaborative optimization among the
modules, avoiding the shortcomings of static
weighting in  traditional methods, and
improving the performance of anomaly
detection.

2.5 Anomaly Threshold Detection Module

In the anomaly detection stage, the model first
obtains the predicted values of the future
sequence and the reconstructed values of the
input sequence through the prediction branch
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and the reconstruction branch, respectively.
Using these two outputs, the prediction error
and reconstruction error at each time point are
computed, and the two are combined in a
weighted manner with a weighting parameter
y to obtain the final anomaly score S, :

So= N =3) w7 A - &) (D
Among them, y, and x, denote the true future

values and the input values, respectively, and
y, and x, are the predicted values and

reconstructed values of the model. This design
enables the anomaly score to simultaneously
reflect the deviation of the model’s prediction
of future trends and its reconstruction ability for

normal patterns, thereby enhancing the
discriminability of anomaly identification.
Subsequently, the module automatically

determines the detection boundary € using the
percentile threshold of the anomaly scores on
the training set. In the testing stage, when the
anomaly score at a certain time exceeds S, >0,
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that time point is marked as an anomalous point.
3. Experimental Results and Analysis

3.1 Datasets

In terms of datasets, three multivariate real-
world datasets were adopted to evaluate the
performance of the model, and their detailed
information is summarized in Table 1. Among
them, the SMD (Server Machine Dataset) [8] is
a five-week dataset collected from the
computing clusters of a large Internet company,
capturing 38 resource utilization indicators
from 28 server machines, with an anomaly rate
of about 4.16%. the MSL (Mars Science
Laboratory dataset) [9] was collected by NASA
and presents the status of sensor and actuator
data of the Mars rover; the SMAP (Soil
Moisture Active Passive Dataset) [9] also
comes from NASA and reflects the soil samples
and telemetry data used by the Mars rover, with
25 dimensions and obvious point anomalies
compared with the other datasets.

Table 1. Description of Datasets

Dataset Feature dimension Training set Test set IAnomaly ratio/%
SMAP 25 135183 427617 13.13

MSL 55 58317 73729 10.72

SMD 38 708405 708420 4.16

3.2 Performance Comparison

Table 2. Experimental Results of the Proposed Model and Baseline Models (unit: %)

Datasets SMAP MSL SMD

Model/Metric Pre R F1 Pre R F1 Pre R F1
LSTM-VAE[10] 85.51 63.66  [72.98 52.57 9446 [67.80 88.73 51.11 64.86
OmniAnomaly[11] 74.16 97.76 8434 [88.67 [91.17 |89.89 83.34 9449  [88.57
USAD[12] 00.96 [85.29  [88.03 93.08 [89.17 [91.08 09.89 [80.26  [89.00
GDN[13] 89.32 88.72  [89.02 91.35 [86.12 [88.66 71.70  99.74 [83.42
TranAD[14] 03.12 [71.33 80.78 00.72  [94.73 92.68 7430 [81.65 [77.80
MTAD-GAT[15] 89.06 [91.23  90.13 87.54 9440 [90.84 04.09 [85.24 [89.45
TFMAE[16] 9436 98.03 [96.16 [92.60 [92.69 [92.64 01.54 [87.46 [89.46
Ours 06.82 [97.26 [97.04 [93.98 [96.73 95.34 89.45 [99.98 [94.43

By examining Table 2, we find that prediction-
and reconstruction-based methods (e. g,
LSTM-VAE, OmniAnomaly, USAD) can learn
latent representations but tend to overfit
anomalous patterns, weakening detection.
Graph-based methods (e. g., GDN, MTAD-
GAT) emphasize cross-variable correlations yet
rely on static, often unweighted graphs, limiting
their  ability to  model time-varying
dependencies and  variable  importance.
Contrastive learning methods (e. g., TranAD,
TFMAE) depend on generic augmentations and
instance discrimination, which may not align
well with anomaly detection semantics. Our
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design alleviates overfitting in reconstruction-
based methods, compensates for graph
methods’ limitations in modeling dynamic
weighted structures, and explicitly considers
uneven variable importance, thereby reducing
false positives and false negatives while
maintaining robustness and improving overall
detection performance and stability.

3.3 Ablation Study

To verify the effectiveness of each module, we
conducted ablation experiments on the SMAP,
MSL, and SMD datasets by removing different
components and comparing the F1-scores of the
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resulting variants. Specifically, we removed the  FourierCrossAttention), and the reciprocal
EMA decomposition module (w/o entropy-weighted  fusion  module (w/o
EMADecomposition), the adaptive graph REFusion). the corresponding results are
attention module (w/o AdaptiveGAT), the reported in Table 3.
frequency-domain attention module (w/o
Table 3. Comparison of F1-Scores of Different Model Variants (unit: %)
Models SMAP MSL SMD
w/o EMADecomposition 93.43 91.06 92.49
w/o AdaptiveGAT 93.16 89.94 92.16
w/o FourierCrossAttention 92.72 90.02 91.87
w/0 REFusion 93.97 92.26 92.50
FTAD 97.04 95.34 94.43
From Table 3, FTAD consistently outperforms confirming the key roles of EMA

its ablated wvariants on all three datasets,
confirming the contribution of each module.
Removing EMADecomposition, AdaptiveGAT,
FourierCrossAttention, or REFusion leads to F1
drops of about 2—5 percentage points, showing
that EMA  enhances temporal feature
separability, the adaptive graph structure is
crucial for modeling complex sensor relations,
frequency-domain modeling is indispensable
for detection, and REFusion effectively
allocates weights based on branch uncertainty
to improve time—frequency complementarity
and anomaly separability. Additional ablations
using only frequency-domain attention or its
learnable-weight variant further verify the
effectiveness of the combined fusion design.

4. Conclusion

In this paper, aiming at the problems of limited
capture of time-domain features and insufficient
utilization of frequency-domain information in
multivariate time series anomaly detection, a
dual-branch model FTAD that fuses the time
and frequency domains is proposed. the model
segments the sequence using a sliding window,
introduces exponential moving average (EMA)
to achieve time series decomposition, and
models the trend and periodic components
through an adaptive graph attention network
and a frequency-domain  cross-attention
mechanism, respectively, thereby significantly
enhancing the representation ability for
complex dynamic patterns and the sensitivity to
anomalies.

Experimental results on public datasets (SMAP,
MSL, SMD) show that FTAD is clearly
superior to existing methods in terms of
Precision, Recall, and Fl-score, verifying its
potential for industrial applications. In addition,
ablation experiments are further conducted to
analyze the contribution of each component,
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decomposition, adaptive graph modeling, and
the improved frequency-domain attention
mechanism in improving model performance.

In the future, multi-scale frequency-domain
feature modeling and multi-task learning
mechanisms can be further explored to improve
the generalization ability and robustness of the
model to anomalous patterns. At the same time,
more diverse graph neural network architectures
can be investigated to fully capture the potential

spatial and temporal dependencies in

multivariate time series.
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