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Abstract: To address the dual bottlenecks of
accuracy and efficiency in traditional tool
detection methods, this paper focuses on the
research on the improvement of machine
vision-based tool detection methods. It aims
to overcome the deficiencies of traditional
detection methods in accuracy and efficiency,
and establish a highly efficient, precise, and
automated system for tool parameter
detection. The research centers on the
optimization of the image edge rough
extraction algorithm and the innovation of
the sub-pixel edge detection algorithm, and
systematically proposes a dynamic weight
adaptive sub-pixel edge detection algorithm.
Finally, through the methods of feature point
recognition and positioning as well as
contour fitting, the on-line measurement of
tool parameters is realized. According to the
experimental results, the system features a
high degree of detection automation and fast
operation speed, with the measurement
accuracy reaching the micron level, which
can be effectively applied to the real-time
measurement of the geometric parameters of
machining tools in industry.

Keywords: Tool Detection; Rough Edge
Extraction; Sub-Pixel Edge Detection;
Dynamic  Weight Adaptation;  Online
Measurement.
1. Introduction
With the in-depth advancement of the

technology, China's manufacturing industry is
accelerating its transformation towards high
precision, high efficiency, and intelligence.
Numerical control processing technology, as a
core support in key fields such as aerospace,
high-end equipment, and precision instruments,
has achieved large-scale application. As a core
functional component in NC processing systems,
the geometric parameter accuracy of cutting
tools directly determines the machining
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accuracy of work pieces and production cycles,
and also plays a decisive role in controlling
production  costs and  improving  the
qualification rate of work pieces. In high-
precision machining, the requirements for the
geometric parameters of cutting tools are
extremely strict.

In precision machining scenarios, even a
deviation of a few microns in tool parameters
can lead to the scrapping of an entire batch of
work pieces, resulting in significant economic
losses. Therefore, how to achieve efficient,
accurate, and intelligent detection of tool
conditions, thereby reducing the scrap rate and
improving production efficiency, has become a
key technical bottleneck that urgently needs to
be broken through in the current manufacturing
field.

Traditional tool inspection methods mostly rely
on manual visual inspection or contact
measurement tools such as micrometers and
gauges. These methods not only have low
inspection efficiency and cannot meet the
demands of large-scale production, but also are
highly subjective, have poor repeatability, and
are easily affected by human factors such as the
inspector's experience and fatigue. More
importantly, contact measurement may cause
minor damage to the cutting edge of the tool,
and the offline inspection mode cannot provide
real-time feedback on the dynamic parameter
status of the tool during the processing, making
it difficult to issue timely warnings of potential
risks. This severely restricts the continuity and
stability of the production line. In contrast, the
tool inspection technology based on machine
vision, with its significant advantages of non-
contact, high speed, high precision, and
automation, can achieve real-time monitoring of
tool status and batch automated inspection,
effectively reducing errors caused by human
intervention. It provides key support for the
automation and intelligence upgrade of
production lines and has become the core
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technical path to solve the pain points of
traditional inspection methods.

For the recognition and positioning technology
of cutting tools, scholars at home and abroad
have conducted a large number of forward-
looking studies: In 2006, Wang [1] proposed a
sub-pixel edge extraction algorithm based on
moments to address the issue of image noise
interference on the edge of the cutting tool,
effectively enhancing the robustness and
stability of edge extraction; KASSIM et al. [2]
tackled the challenge of parameter measurement
for complex- structured cutting tools by
applying image radial segmentation technology,
processing the cutting tool images in different
regions, and further improving the accuracy of
cutting tool parameter detection. This method
was successfully applied to the identification of
cutting tool types and the assessment of wear
degrees; domestic scholars Guan [3] and Zhang
[4] focused on offline measurement scenarios
and developed an image-based geometric
parameter measurement system for cutting tools
based on machine vision. By optimizing the
image preprocessing algorithm and edge
extraction strategy, they achieved measurement
accuracy at the micrometer level, providing
important technical references and engineering

practical experience for related domestic
research.
However, as numerical control machining

continues to evolve towards higher speeds,
greater precision, and increased flexibility, the
existing image recognition and positioning
algorithms have gradually revealed significant
limitations. To address this issue, this paper
proposes a high-precision measurement method
for tool geometric parameters based on machine
vision: under the collaborative effect of a high-
resolution camera and a high-brightness LED
coaxial light source, high-quality tool images
without shadows and low reflection are
captured; camera calibration is completed
through the calibration method, and image
denoising and detail enhancement are achieved
by combining grayscale processing and image
guided filtering technology, laying the
foundation for subsequent edge extraction;
further, a dynamic weight adaptive fusion sub-
pixel edge detection algorithm is innovatively
proposed. This algorithm adaptively adjusts the
fusion weights according to the edge feature
differences in different regions of the tool, and
combines the edge detection advantages of the
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Canny operator to accurately extract the edge
contour curve of the tool. This method aims to
significantly reduce edge detection errors,
greatly improve the accuracy of tool target
recognition and positioning, and provide a
practical technical solution for solving the key
problem of tool condition detection in the
current manufacturing field, thereby facilitating
the intelligent upgrade of  high-end
manufacturing.

2. Tool Parameter Measurement Methods
For the measurement of tool geometry
parameters, after collecting the original tool
image, the original image is first converted to
grayscale [5]. Then, guided filtering is applied
to the grayscale image for noise reduction and
optimization to protect the edge details of the
tool image and lay the foundation for precise
edge extraction. Next, the Canny edge detection
method is used to roughly extract the edges of
the preprocessed image to obtain the edge
feature information of the tool contour. To
eliminate redundant interfering contours and
focus on the core detection area, the
findContours function of OpenCV is used to
extract the outermost continuous contour
skeleton of the tool image, ensuring the targeted
nature of subsequent detection. Subsequently,
the dynamic weight adaptive fusion sub-pixel
edge detection method proposed in this paper is
employed to optimize the accuracy of the
roughly extracted contour edges, significantly
improving the positioning accuracy of the
contour edges and achieving sub-pixel-level
precise positioning of the tool edge contour.
Finally, the extracted sub-pixel contour point
set is subjected to feature point recognition,
location, and fitting processing, and the
quantitative values of various tool geometry
parameters are obtained through precise
calculation [6].

2.1 Image Preprocessing

In industrial production scenarios, the process
of collecting tool images is susceptible to
various interferences, inevitably introducing
noise. The collected images often contain noise,
which may originate from the inherent sensor
noise of the acquisition equipment, circuit
interference, or external disturbances. For high-
precision measurement of tool geometric
dimensions, image noise can seriously interfere
with the accurate extraction of edge features,
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directly restricting the accuracy and reliability
of the measurement results. Therefore, before
edge detection, it is necessary to filter out the
noise through effective image preprocessing
methods while retaining the key edge details of
the tool to the greatest extent, providing a
guarantee for the subsequent precise acquisition
of edge information.

As an image processing algorithm with
outstanding performance, guided filtering [7]
has been widely applied in multiple fields such
as image denoising, detail enhancement, image
segmentation, and HDR synthesis, thanks to its
efficient computational efficiency and stable
edge-preserving effect. It is particularly suitable
for precision measurement scenarios where
edge integrity is strictly required, which is
highly consistent with the technical demands of
tool geometry parameter measurement.

The core advantage of this algorithm lies in the
collaborative realization of denoising and edge
preservation. The basic idea is to construct a
local linear model, calculate the output value by
performing a linear transformation on the local
neighborhood of each pixel, and the final output
image is constrained by both the input original
image and the guidance image. This
fundamentally overcomes the inherent defect of
traditional methods such as Gaussian filtering
and mean filtering, which tend to cause edge
blurring during the denoising process, and
achieves the dual goals of noise suppression
and edge protection.

Its local linear model consists of the guidance
image [, the input image p, and the output
image q. Within the local region of each pixel,
with the guidance image I as the constraint, the
structural information of the guidance image is
utilized to smooth the input image p by solving
the linear transformation of the pixel values
within that region. This design effectively
suppresses noise in the flat areas of the image
during the filtering process, while the edge
areas are completely preserved due to the
structural constraints of the guidance image.
Ultimately, it achieves a collaborative
optimization of denoising and edge preservation,
laying a solid foundation for the precise
extraction of the tool edge contour and the
accurate determination of the edge pixel
positions in subsequent steps.

The specific steps of the calculation process of
the guided filter are as follows:

(1) Local mean calculation: Calculate the mean
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values of the guidance image I and the input
image p within the local region around each
pixel. For each pixel i, the local mean values
4, and g, can be expressed as:

1

N . 1
=11 210) (M
4@ = p0) @)

Here, w. is a specified neighborhood window,
which is a window of a fixed size.

(2) Local variance and covariance calculation:
Calculate the variance and covariance of the
guidance image I and the input image p within
the local region:
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Here, o; is the local variance of the guidance

image I, and 0, is the local covariance between

the guidance image and the input image.
(3) Calculate the linear coefficients: Compute
the linear transformation coefficients within the
local region through the local mean, variance
and covariance.
The pixel values within the local region can be
expressed by a linear model as: a(i) and b(i)

q(1) = a(i)-1(1) +b() ®)
Among them, a(i) and b(i) can be calculated
through the following formulas:
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Here, a(i) is the coefficient of the local linear
transformation, indicating how the input image
p is transformed on the guide image I; b(i) is the
constant term, which determines the offset. € is

a small constant, usually set to 107, to avoid
division by zero errors.
After obtaining a(i) and b(i), the output pixel q(i)
can be calculated. Since pixel i is involved in
the calculation in all windows that contain it,
the q(i) values obtained wusing different
windows are different. Therefore, the average
values of a(i) and b(i) are taken respectively,
resulting in the following formula:
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i| jeo;
1

=7 2.b()

‘ w,’ jew;

®)
(€)

b(i) =




Academic Education

Industry Science and Engineering Vol. 2 No. 11, 2025 GH Publishing House

(4) Calculate the output image: By using the
calculated linear coefficients a(i) and b(i), the
output value q(i) for each pixel can be
computed. For each pixel i, the output value q(i)
is calculated by the following formula:

q(i) =a(i)- 1 (i) + b(i) (10)
This process is applied to each pixel in the
image to calculate the output value of each
pixel, thereby obtaining the final smoothed
image q for the entire image. The smoothing
operation is achieved by guiding the structural
information of the image and can preserve the
edge information of the image during the
smoothing process.

2.2 Coarse Extraction of the Image Edge
After the image filtering process is completed,
it is necessary to accurately detect the edge
contour of the tool and determine the specific
positions of all edge pixels [8]. During the edge
processing of the tool, common edge detection
operators include the Roberts operator [9],
Sobel operator, Prewitt operator, Log operator,
and Canny operator, etc. Table 1 shows the
edge detection situations of each operator.
Table 1. Edge Detection by Various
Operators

operator Application situation

It performs well in detecting images with
steep gray- scale changes and low noise
content, but its edge location accuracy is
not ideal. It is more suitable for the
initial extraction of horizontal and
vertical edges.

Roberts

It has a certain noise smoothing ability
and can output relatively accurate edge
direction information, but the edge
positioning accuracy is limited. It is
suitable for scenarios where the detection
accuracy requirements are not high.

Sobel

It has noise suppression characteristics,
but the edge positioning accuracy is
generally average. In images with gentle
gray-scale gradients and high noise
content, the edge detection effect is more
stable.

Prewitt

The detection results are prone to
double-pixel boundaries and are highly
sensitive to noise. Therefore, they are

Log less directly used for tool edge extraction
and more often for determining the light
and dark area attributes of edge pixels.
It has outstanding anti-noise interference
Canny

ability and excellent denoising effect,
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and can generate fine and continuous
edge contours, but it has the drawback of]

over-smoothing some fine edge details.

A comprehensive analysis of the above
algorithms reveals that the Canny algorithm [10]
detects edges by identifying local maxima of
the image gradient. It calculates the gradient
magnitude and direction wusing the first
derivative of the Gaussian function and
introduces a double-threshold mechanism to
distinguish between strong and weak edges.
Only when weak edges are directly connected
to strong edges are they included in the final
edge output. This design not only endows the
Canny operator with an extremely strong ability
to resist noise interference and effectively
suppresses residual weak noise in the image,
but also achieves a dynamic balance between
noise suppression and edge preservation,
enabling precise capture of truly meaningful
weak edge information and avoiding the loss of
key edges or the introduction of false edges. It
can provide high- quality basic data for
subsequent sub-pixel-level precise positioning
and geometric parameter calculation. Therefore,
the Canny operator is selected in this paper to
perform the coarse extraction of pixel-level
edges. The implementation process includes the
following steps.

(1) Gaussian smoothing: Apply a Gaussian
filter to the preprocessed tool image to reduce
the impact of noise. The standard deviation ¢ of
the Gaussian filter is typically within the range.
The value is 0. 5 - 1. 0, and the specific value is
adjusted according to the noise level of the
image. When the noise is more significant,
increase o appropriately to enhance the
denoising effect; when the noise is less
significant, reduce ¢ to preserve edge details.
This process is achieved through convolution
operations, and the mathematical expression is
as follows:

12
G(x’y)zzﬂo_ze 20 (11)
(12)

Is(x,y)=(G*I)(x,y)
Here, I(x,y) represents the preprocessed input

image, [ (x,y) is the image after Gaussian

smoothing, * denotes the convolution operation,
and G (X, y) is the Gaussian kernel function.

(2) Gradient calculation: The Sobel operator is
used to calculate the gradients of the image in
the x and y directions to capture the intensity
and direction of the change in pixel gray values.
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The calculation expressions for the x-direction
gradient G and the y-direction gradient Gy are

as follows:
G - ol g

2

_ s

13
Yoo (13)

The expressions for the gradient magnitude M(x,
y) and the gradient direction 6(x, y) are
respectively:

M(x,9) =G, (x,)’ +G,(x.y)" (14)
0(x,y) =arctan2(G,(x,),G, (x,y)) (15)

The gradient magnitude reflects the intensity of
the gray-level change at a pixel, while the
gradient direction indicates the dominant
direction of the gray-level change, providing a
core basis for subsequent edge thinning.

(3) Non-maximum suppression: To refine edge
contours and eliminate false edge points, after
obtaining the gradient magnitude image, non-
maximum suppression processing is required.
The core objective is to retain the local
maximum value of each pixel in its gradient
direction and suppress redundant pixels in non-
edge regions. A 9 x9 pixel neighborhood is
constructed, with the central pixel as the
detection point. The gray-level variation
characteristics along the gradient direction of
the central pixel are analyzed. If the gray-level
values of the adjacent pixels along the gradient
direction of the central pixel do not change, the
first-order derivatives of the adjacent pixels
with significant gray-level changes along the
gradient direction and the central pixel are used
to replace the partial derivatives in that
direction. The gradient magnitude of the current
pixel is checked along the gradient direction to
determine if it is a local maximum. The
gradient direction is quantized into four main
directions. Along the quantized gradient
direction, the gradient magnitudes of the central
pixel and its adjacent pixels are compared. Only
pixels with local maximum gradient magnitudes
are retained, and key positions with significant
gray-level changes are selected, while non-edge
pixels with smooth gray-level changes are
excluded. This way, the positions of pixels with
significant gray-level changes are identified,
and those with single gray-level changes are
avoided. Finally, to eliminate false edges and
retain true continuous edges, a double-
threshold processing and hysteresis tracking
method is adopted. The hysteresis threshold
method is applied to screen all possible edge

G, =
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points. Two thresholds, Max and Min, are
defined for the result after non-maximum
suppression. If the gradient magnitude is less
than Min, the edge point is eliminated. If it is
greater than Max, the point is a confirmed edge
and retained. If it is between Max and Min, the
point is a weak edge. Then, for all weak edge
pixels, if at least one strong edge pixel exists in
their 8- neighborhood, they are retained as
edges; otherwise, they are suppressed as non-
edges.

Therefore, the Canny operator will output
continuous edge contours of the end mill,
effectively eliminating discontinuous edge
points and false edge points. These edges are of
pixel-level accuracy and are composed of
individual pixels connected together. However,
the Canny operator can only perform edge
detection at the pixel level, which is difficult to
meet the high- precision measurement
requirements of tool geometry parameters.
Therefore, in order to further improve the
accuracy of image contour detection, sub-pixel-
level fine positioning processing needs to be
carried out on the basis of the coarse
positioning by the Canny operator. This can not
only continuously resist noise interference but
also improve the edge detection accuracy from
the pixel level to the sub-pixel level, providing
a guarantee for the precise calculation of
subsequent geometric parameters.

2.3 Contour Extraction of Images

Based on the pixel-level binary edge map
output by the Canny operator, the findContours
function in OpenCV is used to quickly extract
connected contours. This function retrieves the
connected pixel regions in the image and
outputs a set of pixel-level contour points
composed of integer coordinates. On the one
hand, it provides an accurate initial contour
reference for subsequent sub-pixel-level precise
positioning processing; on the other hand, it can
be directly applied to the segmented fitting
tasks of key parts such as the tool shank, blade,
and cutting edge. The findContours function has
stable and reliable contour extraction
performance, effectively eliminating pseudo-
contours formed by discrete noise points while
maintaining the continuity of the core contours.
It has high integrity, and the algorithm has high
execution efficiency and strong real-time
performance, fully meeting the high-efficiency
requirements of tool detection in industrial
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scenarios. interfered areas, while also struggling to

balance edge positioning accuracy and
2.4 Sub-Pixel Edge Detection continuity.

In modern manufacturing, the measurement
accuracy of tool geometry parameters directly
determines the processing quality of precision
parts. However, tool images have significant
regional heterogeneity characteristics, and the
dual strict requirements of industrial inspection
for accuracy and real-time performance have
made traditional pixel-level detection unable to
meet the demands. Against this backdrop, sub-
pixel edge detection technology has become the
core support for breaking through the accuracy
bottleneck. This technology breaks through the
physical pixel limitations of hardware imaging
systems and uses software algorithms to
subdivide pixel units, thereby enhancing the
image resolution to the sub-pixel level without
changing the hardware configuration, and
achieving higher-precision edge positioning.
Sub-pixel edge points are typically distributed
in the gray-scale gradient regions of the image
and their precise positions can be solved
through various algorithms such as polynomial
fitting and moment calculation. Essentially, it is
a high- precision image processing technology
that optimizes algorithms to break through
hardware limitations. Currently, mainstream
sub-pixel edge detection algorithms can be
classified into three major categories: moment
methods [11], interpolation and fitting methods
[12].

Although existing algorithms have made certain
progress, significant challenges remain in tool
detection in complex industrial scenarios.
Traditional sub-pixel algorithms typically
employ fixed processes and parameter
configurations, lacking robustness and the
ability to dynamically adjust detection
strategies based on the local features of tool
images. In actual tool images, the edge
characteristics of different regions vary
significantly: the cutting edge area has clear
edges and high gray-level contrast, demanding
extremely high positioning accuracy; the
texture interference area requires suppression of
redundant features to avoid false detections; and
the reflective area of the cutting edge shows
complex nonlinear gray-level gradients, prone
to edge breaks or false edges. Fixed detection
algorithms cannot adapt to this regional
heterogeneity, resulting in a significant decline
in detection accuracy in blurred and noise-
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In response to the shortcomings of existing
technologies, this paper proposes a two-stage
optimization sub-pixel edge detection algorithm
based on dynamic weight adaptive fusion. This
algorithm is based on a local feature perception
mechanism [13] and adopts a dual-core fusion
strategy. It innovatively employs a dual-parallel
processing branch architecture: the fitting
algorithm based on the local gray area effect
and the improved region growing algorithm are
used as the core detection branches. The feature
quality score of the first-stage detection results
is extracted through the local feature perception
mechanism, and the dynamic weight allocator
adjusts the output weight ratio of the two
branches in real time according to this score.
Specifically, for regions with high feature
quality scores, such as clear edge regions, the
fitting algorithm based on the local gray area
effect is assigned an 80% weight ratio to
prioritize sub-pixel- level positioning accuracy;
for regions with low feature quality scores, such
as reflective and blurred areas, the improved
region growing algorithm is assigned an 80%
weight ratio to prioritize the continuity and
integrity of the edge. This algorithm can
dynamically adapt the fusion strategy based on
the local features of the tool image, achieving
an adaptive balance between high-precision
positioning and stable continuity, ultimately
achieving a more precise and robust sub-pixel
edge detection effect, providing reliable support
for the high-precision measurement of tool
geometric parameters.

24.1 Local feature extraction and feature
quality scoring

To accurately quantify the quality level of each
Canny edge point and provide a reliable basis
for subsequent dynamic weight allocation, this
algorithm selects the magnitude of the gray-
level gradient of the edge point as the core
feature parameter, and directly calculates the
feature quality score f based on this parameter,
with a value range of [0, 1].

(1) Calculation of the gray gradient magnitude:
For each edge point (i, j) obtained by the Canny
edge detection, the gray gradient magnitude M(i,
j) reflects the intensity and clarity of the edge at
that point. The calculation formula is:

M(i, ) =(G,(i, )))* +(G, (i, /)* (16)
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Here, G, and G, are respectively the gradient

components of the edge point (i, j) in the x-
direction and y-direction.
(2) Feature quality score mapping: To convert
the gray gradient magnitude into an intuitive
quality grade, based on the statistical analysis of
the tool image data set, the effective distribution
range of the gray gradient magnitude at the tool
edge is determined to be 0-100. According to
this, a trapezoidal mapping function is designed
to adaptively convert M(i, j) into the feature
quality score f, as expressed in the following
equation:
0 M <10
M1 10< <50
50-10
1 M > 50

(17

/

When M<10, the edge grayscale change is
extremely weak, being noise points or blurred
pseudo-edges, and = 0;

When 10<M<50, the edge sharpness is at a
medium level, and the intensity of gray-scale
change is positively correlated with edge
quality. Therefore, a linearly increasing
mapping is adopted to ensure the continuity of
the score.

When M>50, the edge grayscale contrast is
strong, the contour is clear, and it has high
positioning reliability, with f=1.

This mapping relationship not only retains the
strong characterization ability of the gray
gradient magnitude for edge quality but also
simplifies the calculation process through piece
wise mapping, avoiding the increase in
complexity and redundant calculations caused
by multi-feature fusion.

(3) Error Compensation for Feature
Quantization: In the medium clarity region (10
< M < 50), the characterization of edge quality
by a single gray gradient amplitude has
limitations and is prone to score deviations due
to local noise or gray-level fluctuations. To
address this, the mean gradient of the
neighborhood is introduced for error
compensation, thereby enhancing the robustness
of the score by integrating local neighborhood
information. The specific formula is as follows:

— | . .
M@, j) :NZ(k,z)eNM(l—’_k’]"'l) (18)

SeomM)=of M)+ (M, j))  (19)
Here, N represents the 3 x3 neighborhood of
the edge point (i, j), and M(i, j) is the mean of
the gradient magnitudes of all pixels in the
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neighborhood. The compensation coefficients o
and [ are determined through grid search
optimization: the search range for o is set to
[0.5, 0. 9], and for B to [0. 1, 0. 5], with a step
size of 0. 1. The combination of coefficients
that yields the highest match between the edge
quality score and the actual edge clarity is
ultimately selected to ensure the effectiveness
and scientific nature of the compensation
mechanism. Here, o and [ are determined to be
0.3 and 0.7, respectively.

2.4.2 Fitting algorithm based on local gray area
effect

During the manufacturing process of cutting
tools, the edge profile is formed by regular feed
motion of the machining process, strictly
following the curve generation mechanism.
Therefore, for edges with high clarity and stable
features, the sub-pixel edge extraction
algorithm based on fitting is more capable of
accurately capturing the feature edge points
consistent with the actual contour of the cutting
tool. The sub-pixel edge extraction algorithm
based on local gray area effect fitting [14] has
the core idea of utilizing the gray distribution
law of the edge pixel neighborhood to construct
a mathematical model for fitting the edge curve,
thereby achieving sub-pixel level edge
positioning. The technical principle is shown in
Figures 1 and 2.
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Figure 1. Ideal Straight Line Edge
y=a+bx+cx Y
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Figure 2. Ideal Curve Edge

When the edge passes through a single pixel,
the pixel is divided into two sub-regions, one
belonging to the tool area and the other to the
background. The actual gray level of this pixel
is not the gray level at a certain point on the
edge, but rather the weighted average of the
ideal gray levels of the tool area and the
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background area, based on their respective
areas within the pixel. Based on this
characteristic, for a pixel with an edge passing
through it, the gray level F,, can be modeled in

the image acquisition process as follows:

_A-S,+B-S, (20)
2

Here, A and B respectively represent the ideal
gray values of the regions on both sides of the
edge, usually taken as the average gray values
of the pixels completely within the
corresponding regions near the edge; SA and
SB respectively represent the areas of the tool
region and the background region divided by
the edge within this pixel; h is the side length of
the pixel, which is usually normalized to 1, so
S,+S,=h"=1, that is, the sum of the areas of

the two sub-regions equals the total area of the
pixel.

Based on the established grayscale image
acquisition model, ideal equations are
respectively constructed for linear and curved
edges. Within a 3 x5 calculation window, the
edge perimeter is solved through integral
operations.

The distribution of the gray-scale area within
the window is used to calculate the fitting edge
coefficient by reverse area calculation,
ultimately achieving precise determination of
the sub-pixel edge position. For each column of
pixels within the window, when calculating the
sub-pixel edge area based on the linear equation,
the edge line divides it into three regions. The
areas L, M, and R within each column that are
included inside the edge can be obtained by
integrating the linear equation, and the formula
is:

—h/2
L:I731/2(a+bx+5h/2)dx
M:_[_I:/zz(a+bx+5h/2)dx 1)

3h/2
R:jm (a+bx+5h/2)dx

According [to the core acquisition model, the
sum of the gray values of each column of pixels
is linearly related to the area of the
corresponding region of that column. Thus, the
relationship between the gray area and the area
is established, and the equation is:

A-B
s, =2 L1458
h
S, = A};B M +5B (22)
S, A Br.sp

==
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In actual calculations, A and B are usually
estimated by taking the average gray value of
the pixels at the corners of the window, as these
pixels are most likely to be entirely on one side
of the edge and can accurately represent the
ideal gray value of the corresponding area.
Combining the above linear relationship
between gray value and area, a system of
equations for the edge line parameters a and b
of the equation y=a+bx can be constructed,

and the solution is obtained as:

4= 28y =5(4+B) (23)
2(A-B)
— S5, (24)
2(A-B)

Once the parameters a and b of the straight line
are determined, the sub- pixel position of the
edge can be directly calculated: the intersection
coordinates of the straight line with the pixel
grid lines are the sub-pixel edge points. If the
pixel coordinates of the window center in the
entire image are (x,,y,) , then the coordinates

(X,> Vo) Of the sub-pixel edge points are:
(25)
Among them, &, and &, are the offsets of the

xsub = xc +6x’ysub =Y. +5y

window center relative to the sub-pixel edge
point, which can be calculated based on the
edge line equation.

Similarly, the area calculation formula and the
coefficient solving formula for the curve
equation y=a+bx+cx’ are:

( —h/2 5
L= Lh/z(a +bx+cx” +5h/2)dx
M= J:h}:; (a+bx+cx® +5h/2)dx (26)
3h/2 2
\R:Ih/z (a+bx+cx™+5h/2)dx
S, = Ah_zB L+5B
<S8, = Ah_zB M +5B 27)
LS, = A _ZB R+5B
268, —S, —S, —60(A+B)
24(A-B)
=SS (28)
2(4-B)
S, +5,-28,,
" 2(4-B)

This algorithm performs linear or curve fitting
within the pixel scale, and the extracted edge
features are both smooth and dense. Its
positioning accuracy can meet the requirements
of high-precision measurement of tool geometry
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parameters in subsequent steps, effectively
compensating for the accuracy deficiency of
pixel-level detection.

2.4.3 Improved region growing algorithm

The traditional region-growing algorithm takes
the edge points detected by Canny as the initial
seeds and merges adjacent pixels based on a
single gray- level similarity criterion to form
continuous edge regions. However, this method
has problems such as weak noise resistance,
poor edge continuity, and insufficient threshold
adaptability in tool image detection. To adapt to
the regional heterogeneity characteristics of tool
edges, this paper proposes an improved region-
growing algorithm. By optimizing the growth
criterion, threshold strategy, and search
direction, the robustness and continuity of edge
extraction are enhanced. The specific design is
as follows:

(1) Multi-constraint growth criterion design: To
avoid the incorrect merging of noise points, a
dual-constraint criterion based on gray-level
difference and gradient similarity is adopted,
and the seed point selection mechanism is
simultaneously optimized:

a. Gray-level difference criterion: Calculate the
gray-level difference Ag=|g, —g..| between

the current pixel to be grown and the seed point.
If Ag< T, > the merging condition is satisfied.

The threshold 7, is dynamically adjusted based

on the noise level of the image.

b. Gradient similarity criterion: Constrain the
consistency of growth from both the gradient
magnitude and direction dimensions to avoid
incorrect merging across edge regions. The
gradient magnitude difference constraint is
\VI,-VI,| < T, , and the gradient direction

difference constraint is |¢, -6,| < T,, where T,
and 7, are the gradient magnitude threshold and

gradient direction threshold, respectively,
ensuring that the growth direction is consistent
with the edge extension direction.

Therefore, to eliminate the growth deviation
caused by noise points as initial seeds, only
strong edge points with a gray gradient
magnitude M(i,j) >30 are selected as seed
points, which can effectively filter out weak
noise points and blurred pseudo-edges.

(2) Adaptive threshold dynamic adjustment
mechanism:  The  growth  threshold is
dynamically adjusted based on local region
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features. For regions with clear edges, smaller
gray-level difference thresholds and gradient
value thresholds are used to precisely control
the growth range and prevent excessive edge
expansion. For regions with noise and blurring,
larger gray- level difference thresholds and
gradient value thresholds are adopted to
enhance the algorithm's tolerance to gray-level
fluctuations and ensure continuous edge growth.
For regions of medium quality, intermediate
thresholds are used to achieve a balance
between accuracy and continuity.

(3) Multi-directional directional growth strategy:
To enhance the continuity and directionality of
edge connections, a growth strategy of "8-
neighborhood search and gradient direction
priority" is adopted. Taking the current seed
point as the center, an 8-neighborhood search
window is constructed to cover all adjacent
pixels, avoiding the omission of potential edge
points; combined with gradient direction
information to optimize the growth priority, it
prioritizes searching adjacent pixels along the
gradient  vertical  direction, and then
successively traverses other neighborhood
directions.

The improved region-growing algorithm,
through the collaborative optimization of
multiple constraint criteria, adaptive thresholds,
and directional search, can not only maintain
edge continuity in noisy areas but also control
the growth accuracy in clear areas, providing

high-quality edge detection results for
subsequent dynamic weight fusion.
2.44 Dynamic weight adaptive fusion

mechanism

Dynamic weight adaptive allocation is the core
innovation of the sub- pixel edge detection
algorithm proposed in this paper. Its main
objective is to adjust the contribution weights of
the local gray area effect fitting algorithm and
the improved region growing algorithm in real
time based on the local feature quality of edge
points, achieving precise complementarity of
the advantages of the two algorithms. In clear
edge regions, the positioning accuracy of the
local gray area effect fitting algorithm is
emphasized, while in blurred regions, the
continuity guarantee of the improved region
growing algorithm is strengthened. Ultimately,
sub-pixel edge detection results with both high
precision and high robustness are output.

(1) Weight function design

To achieve a smooth transition and precise
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adaptation of weights, a piece wise function
based on the feature quality score f is adopted
to design the weight allocation rule, ensuring
that the weights change dynamically with the
edge quality and avoiding detection deviations
caused by sudden changes. The specific
calculation formula is as follows:

For each edge point (i, j), the weight of the local
gray-level area effect fitting algorithm:

0.2 £<05

w, = 0.2+0.6-& 0.53f£0.8(29)
0.8 f>0.38
Weight of the improved region-growing
algorithm:
w, =1-w, (30)

This design achieves smooth switching of
weights through piece wise linear mapping,
avoiding the problem of insufficient
adaptability of a single weight mode.

(2) Weight Optimization Strategy

To further enhance the rationality of weight
distribution and the stability of edge detection, a
spatial consistency constraint mechanism is
introduced to optimize the initial weights,
avoiding detection deviations caused by sudden
changes in the weights of isolated points: the
weight values of adjacent edge points should
maintain a certain consistency, and the weights
are smoothed through neighborhood averaging.

~ 1
wi(i, j) :ﬁZ(k,l)erl(i-'_k’j—’—l) (31

Where N is the 3x3 neighborhood of the edge
point (i,j).

wi(i, j) represents the weight of the optimized
local gray-scale area effect fitting algorithm.
This constraint can effectively suppress the
sudden change in weights caused by isolated
noise points and ensure the smoothness of the
weights in the local area.

2.4.5 Algorithm implementation process

In the process of sub-pixel edge detection, for
the image after contour extraction, the set of
pixel points has been obtained. Based on the

above-mentioned weight design and
optimization strategy, the specific
implementation steps of the dynamic weight
adaptive fusion sub-pixel edge detection

algorithm are as follows:

Step 1: Input data. Read the tool image I after
contour extraction and the corresponding pixel-
level peripheral contour point set P;

Step 2: Calculate the initial weights. Based on
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the feature quality score f of each edge point (i,
j), calculate the initial weights wl and w2 for
the local gray area effect fitting algorithm and
the improved region growing algorithm
respectively.
Step 3: Weight optimization. Apply spatial
consistency constraints. Optimize the initial
weights to obtain the final weights ,(;, ;) and
wa(i, j) 5
Step 4: Calculate the local fitting results
separately: For each edge point (i,j), obtain the
sub-pixel edge result E1(i,j) based on the gray
gradient magnitude M(i, j) through the local
gray area effect fitting algorithm; take the
strong edge points M(i, j) output by the Canny
edge detection as the initial seeds and execute
the improved region growing algorithm to
obtain the sub-pixel edge result E2(i,j).
Step 5: Dynamic Weighted Fusion. Based on
the final optimized weights, the output results
of the two algorithms are weighted and fused to
obtain the final sub-pixel edge point E(i,j), with
the formula being:

E@, j)=w E @G )+w, EG,j) (32)
Step 6: Output the results. Output the sub-pixel
edge image E(i, j) and the corresponding set of
sub-pixel edge points Q, providing high-
precision data support for the subsequent fitting
calculation of tool geometric parameters.

3. Experimental Results and Analysis

3.1 Camera Calibration

In the measurement of tool geometry
parameters, to accurately convert the
measurement results from pixel units to

physical length units, it is necessary to first
determine the pixel equivalent, that is, the
actual physical size represented by each pixel
spacing. Based on the imaging principle, the
pixel equivalent can be theoretically calculated
through the magnification of the lens and the
size of the photosensitive chip. However, due to
factors such as manufacturing errors of the lens
and assembly deviations, the theoretical
calculation results are prone to deviations and
cannot meet the high-precision measurement
requirements of tool geometry parameters.
Therefore, it is necessary to calibrate the
camera system through experimental calibration
to obtain an accurate pixel equivalent.

This paper uses a standard calibration board to
complete the camera calibration [15], as shown
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in Figure 3. The specific process is as follows:
Fix the calibration board on the actual working
plane for tool measurement, control the camera
to precisely focus on the calibration board and
then take pictures; after preprocessing the
collected calibration board images, count the
number of pixels q occupied by a single grid in
the image; given that the actual physical length
of a single grid of the calibration board is 1, the
calculation formula for the pixel equivalent v is:

y=1/q (33)
Through the above calibration process, the
actual physical length corresponding to a single
pixel was ultimately determined, that is, the
pixel equivalent is 47.52 pm. In the subsequent
measurement of tool geometric parameters, it is
only necessary to detect the image.

Figure 3. Calibration Board
The actual physical values of the tool geometry
parameters can be obtained by multiplying the
number of pixels corresponding to the tool
geometry parameters measured by the algorithm
with the pixel equivalent obtained through
calibration.

3.2 Image Preprocessing and Precise Edge
Extraction

To verify the effectiveness and measurement
accuracy of the tool geometry parameter
measurement algorithm proposed in this paper,
the algorithm program was developed and
implemented on the tool geometry parameter
measurement system platform based on VS
Code software using Python language [16]. The
experiment took straight shank end mills as the
measurement objects. Their color images were
collected by high-definition industrial cameras.
After a series of processing on each image, the
core geometry parameters such as the total
length of the tool, the diameter of the shank,
and the helix angle were measured [17]. Finally,
the measurement results of the algorithm were
compared with the results of manual precision
measurement to verify the performance of the
algorithm. The specific steps are as follows:
First, image preprocessing is carried out. To

52

Industry Science and Engineering Vol. 2 No. 11, 2025

eliminate the interference of color redundancy
information in the color image on edge
detection and suppress the noise introduced
during the acquisition process, the collected
color image of the straight shank end mill is
first converted to grayscale, compressing the
three- dimensional color information into one-
dimensional grayscale information. Then,
guided filtering technology is used to denoise
and optimize the grayscale image. This filtering
method can efficiently suppress noise while
precisely preserving the edge details of the tool,
laying a high-quality image foundation for
subsequent edge extraction. The preprocessing
effect is shown in Figure 4.

Figure 4. Image Preprocessing

Then, a rough edge extraction is carried out.
The Canny edge detection algorithm is used to
extract the rough edge contour of the milling
cutter, and a single-pixel-level edge image is
ultimately obtained, providing a reliable basis
for contour extraction. To further screen out
effective contours and eliminate redundant
interference, the findContours function of
OpenCV is called to extract contours from the
binary edge image output by the Canny
detection, and finally a set of continuous and
connected pixel-level contour points is obtained,
as shown in Figure 5.

Figure 5. Coarse Edge Extraction
Finally, sub-pixel edge precise positioning is
completed. Considering that the pixel-level
edge detection accuracy is difficult to meet the
high-precision measurement requirements of
tool geometry parameters, it is necessary to
further improve the positioning accuracy to the
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sub-pixel level. For this purpose, the dynamic
weight adaptive fusion sub-pixel edge detection
algorithm proposed in this paper is used to
perform fine optimization processing on the
above pixel- level contour point set. By
dynamically adjusting the contribution weights
of the dual algorithms, the precise capture of
edge details and the smooth optimization of the
contour are achieved. Ultimately, the sub-pixel-
level edge contour of the tool is obtained as
shown in Figure 6, providing core data support

for the subsequent precise fitting and
calculation of geometric parameters.

jia)

|

N

B

N

Figure 6. Sub-Pixel Edge Detection

3.3 Tool Geometry Parameter Measurement

After the sub-pixel edge extraction is completed,
a method combining feature point recognition,
location and contour fitting is adopted to fit the
obtained sub- pixel edge coordinate point set.
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geometric parameters are carried out to verify
the performance of the algorithm, and the core
geometric parameters are solved through this
method. Taking the measurement of the total
length of the tool as an example, the specific
solution process is as follows: For the tool edge
line obtained by least squares fitting [18], a
column scanning strategy is used to traverse the
effective area of the image, extract the upper
and lower boundary y-coordinates
corresponding to each column on the edge line,
calculate the difference between the upper and
lower boundaries coordinates in the same
column, and the maximum value is the number
of pixels corresponding to the total length of the
tool; multiply this pixel number by the pixel
equivalent obtained through calibration, and the
actual total length of the tool can be converted
[19].

The experimental measurement results and
measurement errors of the tool geometry
parameters are shown in Table 2. Further
analysis of the experimental data in Table 2
reveals that the tool geometry parameter
measurement method proposed in this paper can
output precise measurement results: the total
length measurement error can be controlled
within 3 pm, and the angle parameter
measurement error can be controlled within 0.5,
verifying the feasibility and reliability of the

Experiments on the measurement of tool . S . . .
algorithm in industrial practical applications.
Table 2. Measurement Results of Tool Geometric Parameters

Geometric Measurement results Average Actual | measure

parameters 1 2 3 4 5 measurement results | value error

total length | 94.996 | 94.997 | 94.998 | 94.997 | 94.998 94.997 95.000 | 0.003
diameter 9.999 | 9.998 | 9.997 | 9.998 | 9.997 9.998 10.000 | 0.002

Screw angle | 34.84 | 34.89 | 3491 | 34.88 | 34.87 34.878 35.00 0.122

4. Experimental Results and Analysis

This paper develops a tool geometric parameter
measurement system based on machine vision,
with the core focusing on the optimization of
coarse image edge extraction and innovation in
subpixel edge detection. A dynamic weight
adaptive subpixel edge detection algorithm is
proposed, providing a reliable solution for high-
precision measurement. Experimental
verification shows that the system exhibits good
accuracy, robustness, and efficient operational
performance.

The core technical system of the system follows
the "preprocessing [20] - rough extraction -
precise positioning" approach: guided filtering
is used for preprocessing to achieve noise
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suppression and edge protection; the Canny
algorithm is used for rough edge extraction to
obtain a reliable initial edge point set; the local
gray area effect fitting and the improved region
growing algorithm are innovatively integrated,
and the dynamic allocation of weights is used to
achieve complementary advantages in accuracy
and continuity, significantly improving the edge
positioning accuracy of complex tools.
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