

Research on the Pathways to Structural Optimization of Vocational Education in Japan: An Exploration of the Systems of Professional Universities and Professional Junior Colleges

Chao Zhou^{1,*}, Jie Fan², Yujie Zhou¹, Rong Xu³, Zexiang Li⁴

¹Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, Zhejiang, China

²School of Education Science, Bohai University, Jinzhou, Liaoning, China

³School of Civil Engineering and Architecture, Wenzhou University, Wenzhou, Zhejiang, China

⁴Melbourne Business School, University of Melbourne, Melbourne, Australia

*Corresponding Author

Abstract: Responding to the dual challenges posed by the rise of the knowledge economy and industrial restructuring, Japan has systematically restructured its vocational education system by establishing “Professional Universities” and “Professional Junior Colleges”. This initiative aims to create a new paradigm where academic education and vocational training operate in parallel. The origins of this system lie in the industry’s demand for high-level professional talent, which compelled reforms in educational supply, as well as the structural need for functional differentiation within the education system itself. The core features of the new system include deep industry-education integration, where curricula and teaching models are co-designed through university-enterprise collaboration to enhance practice-oriented instruction; the development of specialized courses based on regional industrial strengths to align talent cultivation with local economic ecosystems; and the establishment of flexible academic structures and lifelong learning pathways to break down traditional boundaries in student recruitment. These measures not only fill the institutional gap in vocational undergraduate education but also form a complete system that enables vertical articulation between secondary vocational education and higher education. This offers valuable insights for the transformation of vocational education in China.

Keywords: Vocational Education; Professional University; Professional Junior College; Vocational Undergraduate Education

1. Introduction

Since the 21st century, the rise of the knowledge economy, the downward expansion of higher education, and the diversified development of modern industrial structures, among other social factors, have jointly driven the transformation of vocational education models in various countries. Japan is a typical case. With the dual objectives of optimising the structure of higher education institutions and enhancing the social recognition of vocational professionals, the Japanese government began constructing a new vocational education system including “Professional Universities” and “Professional Junior Colleges” in 2017. In January 2019, the Ministry of Education, Culture, Sports, Science and Technology (MEXT) officially announced the addition of “Professional Universities” and “Professional Junior Colleges” as new types of higher education institutions, distinguished by their duration of study [1]. Unlike traditional junior colleges, which often emphasized practical skills over theoretical knowledge, “Professional Universities” and “Professional Junior Colleges” are positioned as higher education institutions that cultivate both theoretical knowledge and practical abilities required for specific professional roles. By establishing these institutions, which combine the functions of higher education and vocational training, the Japanese government aims not only to cultivate highly competent professionals but also to inject developmental momentum into the modern vocational education system, clarify the roles of various vocational schools, and explore new pathways for higher education development [2]. This paper focuses on one of the key approaches to optimizing Japan’s vocational education structure—the establishment and development of “Professional Universities” and

“Professional Junior Colleges”—and examines their background, specific measures, and future prospects to provide insights for the reform of vocational education structures in China.

2. Background of the Institutional Establishment of Professional Universities and Professional Junior Colleges

After World War II, Japan’s education system abandoned its previous dual-track structure and adopted the American single-track model, which allowed greater space for the diversified development of vocational education. In 1957, the successful launch of the Soviet satellite Sputnik caused a significant shock in the Western world, and Japan felt the urgent need to increase investment in science and technology. This led to educational reforms, particularly in science and engineering education, to cultivate professional talent. Against this backdrop, Japan began exploring the construction of a modern vocational education system in the 1960s.

2.1 Economic Growth and Socio-Economic Structural Transformation

The construction of Japan’s new vocational education framework began in 1951 with the enactment and implementation of the “Industrial Education Promotion Act”, which restored facilities, teaching content, and teacher quality in post-war vocational education. This laid a solid legal and financial foundation for the expansion and upgrading of the vocational education system in the 1960s [3]. In November 1960, the Ikeda cabinet introduced the “National Income Doubling Plan”, a macroeconomic strategy aimed at doubling the national income over ten years. The plan used the highly resonant slogan of “income doubling” as a political mobilization tool, unifying multiple policy goals such as full employment, international economic cooperation, human capital accumulation, and technological innovation under a national development agenda centred on economic growth [4]. In response to industry’s call for the restoration of higher vocational education, Japan passed an amendment to the “School Education Act” in 1961, establishing the “Kōtō Senmon Gakkō” (Technical Colleges) system. These five-year institutions enrolled junior high school graduates and aimed to cultivate intermediate engineering and technical talent. In 1964, “Tanki Daigaku” (Junior Colleges) were created, focusing on humanities, home economics, and

International Conference on Modern Education, Humanities and Art (MEHA 2025)

education, offering two or three years of higher education with strong regional characteristics and a high proportion of female students. Over the next two decades, against the backdrop of rapid economic growth, industrial demand for human resources and rising disposable incomes led to significant structural adjustments and specialization upgrades. By the 1980s, despite criticism that vocational education had “stratified society and undermined academic ability”, it had grown substantially and exhibited characteristics of integration between school education and pre-employment training, achieving a high degree of marketisation and diversification [5]. By the end of the 20th century, Japan’s vocational education system had not undergone major changes. However, with the rapid transformation and upgrading of the socio-economic structure in the 21st century, the demand for high-level practical professional talent became increasingly prominent. This raised the urgent question of how to establish new types of higher education institutions for vocational training. To address the lack of vocational undergraduate institutions, the Japanese government considered various micro-level factors such as curriculum design, faculty composition, and training orientation. The Ministry of Education, Culture, Sports, Science and Technology (MEXT) issued policy directives and institutional guidelines to steer the reform of the vocational education system [6].

2.2 Mismatch Between Industry “Supply and Demand”

The industry’s demand for high-level vocational professionals centred on three requirements: vocational skills, creativity, and ethics. These were specifically reflected in the practical abilities required for highly specialized professions, innovative capacity to play a creative role in professional fields, and cultivation of professional ethics [7]. At the time, Japan’s formal vocational education institutions mainly consisted of Junior Colleges and Technical Colleges, both of which aimed to efficiently disseminate professional knowledge and skills and cultivate intermediate and low-level vocational professionals. While they played important roles in popularizing higher education and practical vocational training, their inherent limitations became apparent.

The curriculum of Junior Colleges was more general than specialized, and its implementation

was confined to schools with little connection to industry, making it difficult to cultivate students' practical vocational abilities. Meanwhile, Specialized Training Colleges, which constituted the bulk of vocational education, focused on enabling students to obtain professional qualifications through internships, training, and relevant vocational knowledge and skills education. Neither Junior Colleges nor Specialised Training Colleges effectively addressed industry-academia collaboration, internships, or creativity training, making it difficult to cultivate the high-level vocational professionals demanded by industry. This misalignment between vocational education and industry needs led to the establishment of "Professional Universities" and "Professional Junior Colleges". The goal of creating these new institutions was to reconstruct training objectives and curriculum systems, translating industry's demands for practical abilities, innovation, and ethics into quantifiable educational indicators.

For example, curricula were strengthened to align with regional industrial clusters, incorporating real enterprise projects as teaching cases. A "dual mentorship system" was introduced to ensure both technical guidance and professional ethics education [8]. The academic structure also broke from tradition, adopting modular courses and a flexible credit system that allowed students to adjust their learning paths dynamically based on changing industry needs. This addressed the structural contradiction between the supply side of vocational education and the demand side of industry at an institutional level.

2.3 Inevitable Trend of Functional Differentiation Within the Education System
After the institutionalization of "Kōtō Senmon Gakkō" (Technical Colleges) in 1962, the permanent establishment of "Tanki Daigaku" (Junior Colleges) in 1964, and the creation of "Senshū Gakkō" (Specialized Training Colleges) in 1976, Japan's modern higher vocational education framework was largely established. Until the introduction of "Professional Universities" and "Professional Junior Colleges", adjustments to higher vocational education occurred within this framework.

On one hand, most newly established universities and junior colleges set up faculties to cultivate professional qualifications, increasing the proportion of vocational

education in higher education institutions. On the other hand, according to MEXT regulations, graduates of Specialised Training Colleges were recognised as having equivalent academic ability to university graduates and were eligible to take entrance exams for graduate schools [9]. These measures effectively promoted the integration of higher education and vocational education functions in some institutions. However, independent institutions with dual functions remained theoretical constructs (functional differentiation of universities).

In 2005, the Central Council for Education proposed the "functional differentiation of universities" in its "Future Vision of Higher Education in Japan", pointing to the trend of specialisation among various higher education institutions. This was not without basis but rather an inevitable direction in the evolution of the academic system. In its 2016 report, the Council stated, to fully realize individual abilities and potential, participation from the whole society is needed, ensuring diversity and high quality in education [6]. This report helped set the direction for the institutionalization of higher vocational education institutions, a expectation arising not from the arbitrary decisions of Japan's education authorities but from the developmental needs of education itself.

By incorporating "Professional Universities" and "Professional Junior Colleges" into the academic system, the top-level design of vocational education broke down the boundaries between secondary vocational education and higher education, forming a coherent vocational education system from secondary vocational schools to higher vocational institutions and then to universities (Professional Universities or Professional Junior Colleges) [10]. Additionally, "Professional Universities" and "Professional Junior Colleges" operate at the level of vocational undergraduate education, complementing traditional universities and promoting functional differentiation.

3. Institutional Structure and Paradigm Innovation of Professional Universities and Professional Junior Colleges

Following a systematic elaboration of their establishment background and motivations, and to gain a deeper understanding of how this system operates in practice to achieve its intended goals, the following section will delve into the institutional architecture and core

innovations of Professional Universities and Professional Junior Colleges. Their transformative nature is primarily manifested in three key dimensions: constructing a dual university-enterprise education model, developing curricula with deep regional industry alignment, and designing flexible academic structures with lifelong learning pathways.

3.1 Dual University-Enterprise Education Model

Compared to traditional vocational education institutions, “Professional Universities” and “Professional Junior Colleges” place greater emphasis on connections with Japanese industry. Through industry-academia collaboration, they conduct practical teaching and research partnerships, helping students with strong vocational orientations adapt early to the role of new employees. To ensure the implementation of the university-enterprise cooperation model, MEXT empowered subordinate education administrative bodies through annual amendments to the “School Education Act” and the “Professional University Establishment Standards”, issuing detailed rules and regulations to guide curriculum design and implementation. Key provisions include:

- (1) Allocation of teaching time: internships and skills training must account for no less than one-third of the total.
- (2) For four-year programs, the total duration of enterprise internships should typically be 600 hours or more.
- (3) At least 40% of faculty must be practical experts with industry experience, capable of teaching cutting-edge knowledge and innovative thinking from the corporate field.
- (4) Small-class teaching (under 40 students) replaces large lecture hall instruction.
- (5) Reflecting the opinions of curriculum collaboration committees composed of industry and local stakeholders to cultivate talent needed by industry and the region [11].

These provisions clarify the roles of universities and enterprises in the vocational education process. On-site practical internships are jointly participated in by schools and enterprises, with work placements and internship content tailored to the vocational field. Students gain practical abilities through hands-on involvement in actual business operations [12].

For instance, Tokyo International University of Technology employs “scrum development”

International Conference on Modern Education, Humanities and Art (MEHA 2025)

within its on-site practical training programme. This involves small teams working collaboratively. Scrum development is an adapted methodology, its name derived from rugby scrums where players unite as one to drive development forward. Thus, Scrum development emphasizes communication, characterized by a small team collaborating to achieve objectives. Rather than developing all features at once, it involves releasing several functionalities at short intervals (sprints). Initially, interns grasped Scrum fundamentals through lectures and experiential learning such as the Marshmallow Challenge (a game where teams compete to build the tallest free-standing tower using dried spaghetti, marshmallows, scissors, tape, and string within a time limit). This familiarized them with business development practices and gradually cultivated their ability to independently complete sub-tasks within Scrum teams. By incorporating internships into formal education, students not only improved their vocational skills and cognitive abilities but also experienced potential future work environments, making university-enterprise collaboration a highlight of “Professional Universities” and “Professional Junior Colleges”.

3.2 Curriculum Development and Regional Industry Alignment

“Education Curriculum Collaboration Councils”, composed of academia, industry, and local communities [13], are responsible for discipline establishment and curriculum development at “Professional Universities” and “Professional Junior Colleges”. Based on macro factors such as international competition, regional economies, and industrial needs, these councils guide the development of numerous new courses tailored to regional characteristics, ensuring close alignment between vocational education and industry.

The Tokyo Campus Faculty of the Professional Institute of International Fashion, leveraging Tokyo's fashion industry cluster, favourable international exchange opportunities, and high openness, introduced an overseas internship programme in the third year of its Fashion Innovation Department. This incorporated specialized fashion overseas internships into the curriculum framework – a first for vocational education institutions. The aim of the overseas internship is to equip students with an international market perspective, enabling them

to master the knowledge of fashion design, marketing, and promotion. Through internships overseas, students apply the fashion theory learned in their first two years, gaining practical abilities. The overseas internship is conducted in two phases: Phase One: Interns participate in short-term placements in Europe, America, or Asia, gaining on-site experience in international fashion to enhance practical skills. Phase Two: Students interested in deeper learning undertake long-term internships of two weeks to one month. In the 2022 academic year, interns were placed in network marketing departments and production sites of world-renowned fashion enterprises in France, Italy, and the UK, with options to participate in learning activities at prestigious art colleges.

For students, overseas internships offer multiple benefits: exposure to new technologies and management concepts in an international environment, improvement of professional abilities, development of cross-cultural communication skills through cooperation and competition with people of different nationalities and cultures, and broadening of international perspectives by understanding economic, social, and cultural differences between regions, laying a solid foundation for future career development. However, the high application thresholds (including professional background, language proficiency, student status, age, etc.) mean that overseas internships are relatively less accessible, with elite students dominating the opportunities.

3.3 Flexible Academic Structure and Lifelong Learning Pathways

Table 1. Comparison of Core Features of Professional Universities, Traditional Universities, and Specialized Training Colleges

Type	Professional Universities	Traditional University	Specialized Training Colleges
Educational Objectives	Professionals with high practical skills and creativity	Academic Research, Broad Liberal Education	Practical Skills, Professional Qualifications
Curriculum Focus	Practical Experience (Internships account for 30-40% of credits)	Theory and Academic Research	Skills Training and Practical Application
Industry-Education Integration	Statutory Requirements (Agreement Sessions, Corporate Placements)	Varies by institution, with differing levels of implementation	Varies by institution, degree of implementation differs
Faculty Composition	~40% Practitioner-based teaching staff	Primarily academically qualified teaching staff	Primarily practitioners
Degree Conferral	Bachelor's Degree (Professional)	Bachelor's Degree (Academic)	Graduation Certificate/Specialist Degree
Adult Learner Intake	System Focus (Flexible Academic System)	Relatively low ratio (~2%)	Relatively higher

Note: Information sourced from reference [15].

Moreover, industry-education integration is not

“Professional Universities” and “Professional Junior Colleges” implement flexible enrolment systems, admitting not only recent high school graduates but also working adults and foreigners. In addition to traditional general selection, admission through school recommendations and skill assessments is allowed, providing opportunities for students with special talents and skills to receive higher vocational education [14].

The training structure correspondingly divides courses into initial courses (2 or 3 years) and advanced courses (1 or 2 years). Students completing the initial courses can choose to advance to the advanced courses or enter employment directly (the program of Professional Junior Colleges is equivalent to the initial courses). The advanced courses enrol not only students progressing from within the institution but also recent graduates from other higher education institutions or working adults.

As shown in Table 1, the distinctive features of Professional Universities are evident not only in their flexible academic structure but also throughout their core dimensions. Unlike traditional universities, which focus on “academic research and broad liberal arts”, and specialized training colleges, which emphasize practical skills and professional qualifications, Professional Universities explicitly aim to cultivate highly practical and creative professional talent. This goal is realized through a unique curriculum heavily leaning towards practice, with internship credits comprising 30% to 40% of the total—far higher than in traditional universities.

optional but legally mandated, ensured through

the establishment of “collaboration councils” and deep enterprise internships. In terms of faculty composition, about 40% of teachers are practical experts from the industry, guaranteeing the practicality and cutting-edge nature of teaching content. Upon completion, students are awarded the unique Bachelor (Professional) degree, distinguishing it from traditional academic bachelor’s degrees.

Thanks to this well-designed system, admitting working adults and providing flexible learning pathways has become a focus of Professional Universities, contrasting with the low proportion of working adults in traditional universities (around 2%). To tailor education to students from different enrolment channels, MEXT regulations stipulate that when working adults are admitted, their experience and abilities gained through actual work should be considered through an “acquired credits” system, where accumulated work experience hours are converted into credits and counted towards the required academic years. These initiatives promote mutual circulation between university students and working adults, enabling an accumulative and diverse style of learning.

4. Lessons from Japan’s “Undergraduate-Level” Vocational Education System

Positioned at the undergraduate level, “Professional Universities” and “Professional Junior Colleges” fill a gap in Japan’s vocational education system. As of April 2024, Japan has established 24 such institutions (including the Management Professional Department within the Faculty of Modern Business at Nagoya Sangyo University), spread across 1 metropolis, 1 urban prefecture, and 13 counties, indicating that higher vocational education in Japan has already taken shape [16]. The rapid achievement of such results is largely due to the excellent design of these institutions and their high compatibility with Japan’s vocational education system.

It is foreseeable that the scale of “Professional Universities” and “Professional Junior Colleges” will continue to expand. With the refinement of MEXT’s new policies, the deepening of education reform, and the strengthening of international exchange, these institutions will continuously improve their educational standards and international competitiveness, undertaking the responsibility of providing

International Conference on Modern Education, Humanities and Art (MEHA 2025)

high-level vocational education. As industrial upgrading and technological iteration deepen, vocational undergraduate education, as a key component of the modern vocational education system, has become an important issue in national strategy. The innovative practices of Japan’s “Professional Universities” and “Professional Junior Colleges” in talent cultivation goal positioning, curriculum system design, and industry-education integration mechanisms offer multi-dimensional and deep insights for the development of vocational education in China.

4.1 Constructing a Dynamic Industry-Education Integration Mechanism Guided by Market Demand

Japan’s vocational undergraduate education, with its “government-industry-university” tripartite collaboration mechanism, has achieved efficient alignment between educational resources and industrial needs. China should establish a dynamic adjustment mechanism for industry-education integration to ensure educational content deeply matches social demands [17]. Specifically:

- (1) The government should lead in building an industry-education information sharing platform, regularly publishing industry talent demand forecasts to guide the alignment of institutional program offerings with regional industrial layouts.
- (2) Enterprises should be encouraged to deeply participate in talent cultivation scheme design, curriculum development, and practical training base construction, forming so-called school-enterprise communities of shared future.
- (3) An industry feedback-oriented education quality evaluation system should be established, involving third-party assessment agencies and enterprises in monitoring educational quality to ensure the effectiveness and foresight of talent cultivation.

4.2 Innovating a Talent Cultivation Model that Deeply Integrates Academic, Vocational, and Technical Elements

The modular curriculum system, practice-oriented teaching methods, and dual-qualification faculty structure of “Professional Universities” and “Professional Junior Colleges” do not conflict with traditional academically dominated talent cultivation models. Instead, they organically combine

academic, vocational, and technical aspects from the perspectives of knowledge, ability, and quality. China's vocational undergraduate education should break through the limitations of traditional disciplinary curriculum models, promoting a teaching paradigm shift towards work process and innovation orientation.

On one hand, a curriculum system centred on vocational abilities should be constructed, strengthening the proportion of practical teaching and promoting project-based learning, case teaching, and other real-problem-driven teaching methods. On the other hand, the faculty structure should be optimized, with clear requirements for the proportion of "dual-qualification" teachers, introducing enterprise experts with rich practical experience to participate in teaching, enhancing students' technological application and innovation abilities [18]. Additionally, drawing on Japan's vocational credit recognition system, learning outcomes acquired through work experience and professional certifications should be acknowledged, broadening lifelong learning pathways.

4.3 Improving the Vocational Undergraduate Degree System and Enrollment Examination System

By establishing the "Professional Degree" and implementing diverse selection methods (such as recommended admission and skill assessments) in entrance examinations, Japan has significantly improved the quality of students and social recognition of vocational education. China should accelerate the improvement of its vocational undergraduate degree certification system, clarifying its equivalence to and differences from ordinary undergraduate degrees, enhancing the value of vocational qualifications, and eliminating social prejudice against vocational education at its root.

In terms of enrollment systems, explore the establishment of a vocational education college entrance examination model combining cultural literacy, vocational skills, and comprehensive quality evaluation. Expand the enrollment autonomy of higher vocational institutions, implement multiple examinations and diversified admission mechanisms, and attract diverse student sources such as secondary vocational graduates and working adults [19]. Simultaneously, strengthen the connection between secondary and higher vocational

education and the integration of general and vocational education, constructing a modern vocational education system that enables vertical articulation (secondary vocational education → higher vocational education → vocational undergraduate education → professional master's) and horizontal integration (with general education), providing diverse growth pathways for students.

In essence, drawing on Japan's experience is of great value for improving China's vocational education system and enhancing its international competitiveness. However, the key lies in basing efforts on China's national conditions and development stage, closely integrating national strategy, regional industrial layout, and talent development patterns, and courageously exploring and constructing a high-quality development model for modern vocational education with Chinese characteristics. This is the necessary path to advance from a large vocational education country to a strong vocational education nation.

5. Conclusion

In summary, Japan's establishment of "Professional Universities" and "Professional Junior Colleges" represents a systematic and strategic response to the evolving demands of the knowledge economy and industrial transformation. By deeply integrating industry with education, tailoring curricula to regional economic characteristics, and implementing flexible learning pathways, Japan has not only addressed structural gaps in its vocational education system but also created a sustainable model for cultivating high-level professional talent. These innovations offer valuable lessons for China and other nations seeking to enhance their vocational education systems. Specifically, the emphasis on dynamic industry-education collaboration, the fusion of theoretical and practical training, and the development of recognized vocational qualifications provide a framework for aligning educational outcomes with labor market needs. For China, adapting these strategies within its unique socio-economic context will be essential to building a modern, high-quality vocational education system that supports both individual career development and national strategic goals.

References

[1] Kaneko Motohisa. The Significance of

Professional Universities. *Japanese Journal of Labor Studies*, 2017, 687: 4-13.

[2] Zhu Wenfu, Sun Yu. The Development Path and Experience of Undergraduate-Level Vocational Education in Japan. *Foreign Education Research*, 2023, 50(02): 101-115.

[3] Shen Xuechu. *Contemporary Japanese Vocational Education*. Taiyuan: Shanxi Education Press, 1996: 72-74.

[4] Nakamura Masanori. *Postwar History of Japan*. Beijing: China Renmin University Press, 2008: 66.

[5] Ji Mengchao, Sun Junhua. The Emerging Force in Japan's Modern Vocational Education System: Professional Universities and Professional Short-Term Colleges. *Chinese Vocational and Technical Education*, 2021, (21): 44-52.

[6] Konata Naoyuki, Tanimura Eihiro, Tateishi Shinji. Faculty Organization and Curriculum of Professional Universities and Professional Short-Term Colleges. *Journal of Higher Education*, 2021: 63-82.

[7] Terada Mitsugi, Shida Hidefumi, Kikuchi Katsuhiko. Professional Universities and Education. *Educational Research*, 2018, 12: 105-111.

[8] Deng Zhuo, Wu Xuan. The Japanese Path to Building Vocational Undergraduate Institutions: An Analysis Based on the Vision Texts of 19 Professional Universities. *Comparative Education Review*, 2024, 46(04): 62-71.

[9] Takeda Hiroki. On the Establishment of Professional Universities: What is Required in an Era of Coexistence of Traditional Universities and Professional Universities. *Human and Education: Bulletin of the Mejiro University Institute of Education*, 2018, (12): 117-121.

[10] Hu Jianfeng, Gong Fuqing, Li Yi. Vocational Undergraduate Education: The Institutional Design and Practical Implications of Japan's Professional Universities. *Chinese Vocational and Technical Education*, 2022, (15): 64-73.

[11] Yamauchi, M., Ajima, T., Ikeda, S., et al. Design and Practice of Fieldwork Internships at Professional Universities.

International Conference on Modern Education, Humanities and Art (MEHA 2025)

Proceedings of the 9th Symposium on Practical IT Education rePiT 2023 in Hakodate, 2023: 10-15.

[12] Wang Wenli, Su Yue. Institutional Construction and Talent Cultivation Practices of Undergraduate-Level Vocational Education in Japan: An Investigation Based on 14 Professional Universities. *China Higher Education Research*, 2022, (07): 62-68.

[13] Wang Liyan, Han Zhongshu. Japan's Experience in Optimizing Its Vocational Education System Amid Social Change and Its Implications: Based on the Practice of Establishing Professional Universities. *Adult Education*, 2021, 41(11): 87-93.

[14] Wu Di. The Development of Japan's Professional Universities and Its Implications for China's Vocational Undergraduate Education. *Education and Vocation*, 2023, (18): 107-111.

[15] Inage Fumie. The Establishment of Professional Universities and Professional Junior Colleges-Parliamentary Debates Concerning Amendments to the School Education Act. *Legislation and Research*, 2017(392): 21-33.

[16] Norihide Imanaga, Yasuhiro Matsabayashi. Research Note: The Potential of Professional Universities in Promoting Long-Term Internships - A Case Study of Nagoya Sangyo University. *Proceedings of Vocational Pedagogy Research*, 2023, 1: 60-68.

[17] Fu Qionglin, Liu Jiaxuan. How Japan's Professional University System Promotes Industry-Education Integration: An Analysis Based on the Dual Triple Helix Theory. *Vocational Education Research*, 2025, (01): 81-88.

[18] Yang Mei, Kardeliya. The Goals, Measures, and Implications of Talent Cultivation in Japan's Professional Universities. *Education and Vocation*, 2024, (18): 80-88.

[19] Zhu Qiuhan. Characteristics and Implications of the Entrance Examinations for Higher Vocational Education in Japan. *Communication of Vocational Education*, 2021, (03): 31-40.